
The STAT Handbook
Data Analysis Programs

on UNIX and MSDOS

Gary Perlman

 1986 Gary Perlman

UNIX is a trademark of AT&T Bell Laboratories.
STAT is not a product of any company or organization.

STAT is used at your own risk.
STAT should not be used for decision making by non-statisticians.
STAT is not robust for large datasets or for highly variable data.
STAT is unsupported, but known bugs are removed.

This handbook was typeset by the author using the troff text formatting system on the UNIX operating
system. The cover design, also by the author, shows data flowing though pipes and filters to produce
displays, summaries, and inferences.

Dedicated to Caroline.

Copyright  1986 Gary Perlman

All rights reserved. No part of this handbook may be reproduced or transmitted in any form or by any
means without prior written permission from the author. Non-profit organizations may make copies
provided such copies are not made for resale.

First Edition: March 1986
Second Edition: September 1986
Third Edition: March 1987

Printed in the United States of America

 1986 Gary Perlman

STAT Handbook 0-1

STAT Handbook
Table of Contents

Chapter 0: Preface

Chapter 1: Introduction
1 Capabilities and Requirements ... 1-1
2 Design Philosophy .. 1-2
3 Table of STAT Programs .. 1-3
4 Table of UNIX and MSDOS Utilities ... 1-4

Chapter 2: Annotated Example
1 A Familiar Problem .. 2-1
2 Computing Final Scores ... 2-2
3 Summary of Final Scores ... 2-3
4 Predicting Final Exam Scores ... 2-4
5 Failures by Assistant and Gender ... 2-6
6 Effects of Assistant and Gender .. 2-8

Chapter 3: Conventions
1 Command Line Interpreters .. 3-1
2 Command Formats ... 3-2
3 Program Options ... 3-3
4 File Inputs and Outputs .. 3-4
5 Input Formats ... 3-5
6 Limits and Error Messages ... 3-6
7 Manual Entries ... 3-7

Chapter 4: Data Manipulation
1 Data Generation/Augmentation .. 4-1
2 Data Transformation ... 4-3
3 Data Formatting .. 4-5
4 Data Extraction ... 4-8
5 Data Validation ... 4-9
6 DM: Tutorial and Manual ... 4-10

Chapter 5: Data Analysis
1 Table of Analysis Programs .. 5-1
2 stats: print summary statistics ... 5-2
3 desc: descriptions of a single distribution ... 5-3
4 ts: time series analysis and plots ... 5-4
5 oneway: one way analysis of variance .. 5-5
6 rankind: rank-order analysis of independent groups ... 5-6
7 pair: paired points analysis and plots .. 5-7
8 rankrel: rank-order analysis of related groups ... 5-8
9 regress: multiple correlation/regression .. 5-9

10 anova: multi-factor analysis of variance ... 5-10
11 contab: contingency tables and chi-square .. 5-12
12 dprime: d’/beta for signal detection data ... 5-13
13 CALC: Tutorial and Manual ... 5-14

Chapter 6: Manual Entries

 1986 Gary Perlman

CHAPTER 0

Preface

Purpose and Intended Audience of the Handbook
Comparison With Other Packages
Distribution Conditions
References

 1986 Gary Perlman

STAT Handbook Preface 0-1

Purpose and Intended Audience of the Handbook
This handbook is meant to be an introduction to the STAT programs. It is not written to teach students how to do
data analysis, although it has been used as a supplementary text in courses. STAT users should be familiar with
using the hardware and utility programs (e.g., a text editor) on their systems.

Comparison With Other Packages
STAT has advantages and disadvantages compared to other statistical packages. STAT is not a comprehensive
package because it was developed as needs arose. So there are deficits in many areas of analysis: no multivariate
analysis other than regression, and only simple graphics. Independent of these limitations, the programs are not
designed for use with large data sets or large values; the programs are usually adequate for data up to a few thousand
points. Also, STAT is unsupported, so if you have problems installing or using the programs, you may be on your
own. Despite these limitations, STAT provides you with most analyses reported in research. STAT programs run
on UNIX and MSDOS, operating systems popular in educational and research institutions, government, and
industry. The liberal copyright of the programs allows free copies to be made for multiple machines provided the
programs are not copied for material gain. STAT programs integrate easily with other programs, and this makes it
possible for new programs to be added later.

Distribution Conditions
CAREFULLY READ THE FOLLOWING CONDITIONS. IF YOU DO NOT FIND THEM ACCEPTABLE, YOU
SHOULD NOT USE STAT.

STAT IS PROVIDED "AS IS," WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. THE USER
ASSUMES ALL RISKS OF USING STAT. THERE IS NO CLAIM OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. STAT MAY NOT BE SUITED TO YOUR NEEDS. STAT MAY NOT
RUN ON YOUR PARTICULAR HARDWARE OR SOFTWARE CONFIGURATION. THE AVAILABILITY OF
AND PROGRAMS IN STAT MAY CHANGE WITHOUT NOTICE. NEITHER MANUFACTURER NOR
DISTRIBUTOR BEAR RESPONSIBILITY FOR ANY MISHAP OR ECONOMIC LOSS RESULTING
THEREFROM OF THE USE OF STAT EVEN IF THE PROGRAMS PROVE TO BE DEFECTIVE. STAT IS
NOT INTENDED FOR CONSUMER USE.

CASUAL USE BY USERS NOT TRAINED IN STATISTICS, OR BY USERS NOT SUPERVISED BY
PERSONS TRAINED IN STATISTICS, MUST BE AVOIDED. USERS MUST BE TRAINED AT THEIR OWN
EXPENSE TO LEARN TO USE THE PROGRAMS. DATA ANALYSIS PROGRAMS MAKE MANY
ASSUMPTIONS ABOUT DATA, THESE ASSUMPTIONS AFFECT THE VALIDITY OF CONCLUSIONS
MADE BASED ON THE PROGRAMS. REFERENCES TO SOME APPROPRIATE STATISTICAL SOURCES
ARE MADE IN THE STAT HANDBOOK AND IN THE MANUAL ENTRIES FOR SPECIFIC PROGRAMS.
STAT PROGRAMS HAVE NOT BEEN VALIDATED FOR LARGE DATASETS, HIGHLY VARIABLE
DATA, NOR VERY LARGE NUMBERS.

You may make copies of any tangible forms of STAT programs, provided that there is no material gain
involved, and provided that the information in this notice accompanies every copy. You may not copy printed
documentation unless such duplication is for non- profit educational purposes. You may not provide STAT as an
inducement to buy your software or hardware or any products or services. You may distribute copies of STAT,
provided that mass distribution (such as electronic bulletin boards or anonymous ftp) is not used. You may not
modify the source code for any purposes other than getting the programs to work on your system. Any costs in
compiling or porting STAT to your system are your’s alone, and not any other parties. You may not distribute any
modified source code or documentation to users at any sites other than your own.

 1986 Gary Perlman

0-2 Preface STAT Handbook

References

Bradley, J. V. (1968) Distribution-Free Statistical Tests. Englewood Cliffs, NJ: Prentice-Hall.

Coombs, C. H., Dawes, R. M., & Tversky, A. (1970) Mathematical Psychology: An Elementary Introduction.
Englewood Cliffs, NJ: Prentice-Hall.

Dixon, W. J. (1975) BMD-P Biomedical Computer Programs. Berkeley, CA: University of California Press.

Guilford, J. P., & Fruchter, B. (1978) Fundamental Statistics in Psychology and Education. (6th Edition). New
York: McGraw-Hill.

Hays, W. L. (1973) Statistics for the Social Sciences. (2nd Edition). New York, NY: Holt Rinehart Winston.

Hemenway, K., & Armitage, H. (1984) Proposed Syntax Standard for UNIX System Commands. In Summer
USENIX Conference. El Cerito, CA: Usenix Association. (Washington, DC.)

Keppel, G. (1973) Design and Analysis: A Researcher’s Handbook. Englewood Cliffs, NJ: Prentice-Hall.

Kerlinger, F. N., & Pedhazur, E. J. (1973) Multiple Regression in Behavioral Research. New York, NY: Holt
Rinehart Winston.

Kernighan, B. W., & Ritchie, D. M. (1979) The C Programming Language. Englewood Cliffs, NJ: Prentice-Hall.

Nie, H. H., Jenkins, J. G., Steinbrenner, K., & Bent, D. H. (1975) SPSS: Statistical Package for the Social Sciences.
New York: McGraw-Hill.

Perlman, G. (1980) Data Analysis Programs for the UNIX Operating System. Behavior Research Methods &
Instrumentation, 12:5, 554-558.

Perlman, G. (1982) Data Analysis in the UNIX Environment: Techniques for Automated Experimental Design
Specification. In K. W. Heiner, R. S. Sacher, & J. W. Wilkinson (Eds.), Computer Science and Statistics:
Proceedings of the 14th Symposium on the Interface.

Perlman, G., & Horan, F. L. (1986) Report on STAT Release 5.1 Data Analysis Programs for UNIX and MSDOS.
Behavior Research Methods, Instruments, & Computers, 18.2, 168-176.

Perlman, G., & Horan, F. L. (1986) STAT: Compact Data Manipulation and Analysis Programs for MSDOS and
UNIX - A Tutorial Overview. Tyngsboro, MA: Wang Institute of Graduate Studies.

Ritchie, D. M., & Thompson, K. (1974) The UNIX Time-Sharing System. Communications of the Association for
Computing Machinery, 17:7, 365-375.

Ryan, T. A., Joiner, B. L., & Ryan, B. F. (1976) MINITAB Student Handbook. North Scituate, MA: Duxbury Press.

Siegel, S. (1956) Nonparametric Methods for the Behavioral Sciences. New York: McGraw-Hill.

 1986 Gary Perlman

CHAPTER 1

Introduction

1.1 Capabilities and Requirements .. 1-1
Dataset Sizes
System Requirements
Availability and Distribution

1.2 Design Philosophy .. 1-2
1.3 Table of STAT Programs .. 1-3

Data Manipulation Programs
Data Analysis Programs

1.4 Table of UNIX and MSDOS Utilities ... 1-4

The purpose, environment, and philosophy of the STAT programs are introduced.

 1986 Gary Perlman

STAT Handbook Introduction 1-1

Section 1.1 Capabilities and Requirements

STAT is a small statistical package I have developed on the UNIX operating system (Ritchie &
Thompson, 1974) at the University of California San Diego and at the Wang Institute of Graduate Studies. Over
twenty programs allow the manipulation and analysis of data and are complemented by this documentation and
manual entries for each program. The package has been distributed to hundreds of UNIX sites and the portability of
the package, written in C (Kernighan & Ritchie, 1979), was demonstrated when it was ported from UNIX to
MSDOS at Cornell University on an IBM PC using the Lattice C compiler. This handbook is designed to be a
tutorial introduction and reference for the most popular parts of release 5.3 of STAT (January, 1987) and updates
through February, 1987. Full reference information on the programs is found in the online manual entries and in the
online options help available with most of the programs.

Dataset Sizes
STAT programs have mostly been run on small datasets, the kind obtained in controlled psychological
experiments, not the large sets obtained in surveys or physical experiments. The programs’ performances on
datasets with more than about 10,000 points is not known, and the programs should not be used for them.

System Requirements
The programs run on almost any version of UNIX. They are compatible with UNIX systems dating back to Version
6 UNIX (circa 1975). On MSDOS, the programs run on versions 2.X through 3.X. MSDOS versions earlier than
2.0 may not support the pipes often used with STAT programs, and MSDOS version 4.0 formats are not
compatible. Space requirements for MSDOS are about 1 megabyte of disk space, and at least 96 kilobytes of main
memory. Hard disk storage is preferred, but not mandatory.

Availability and Distribution
Please take care to follow all the instructions below.
• Please indicate the items that you would like to order.
• Orders must be prepaid. Purchase orders are not acceptable.
• Make your check/(postal)money order payable to G. Perlman.
• Checks must be in US funds drawn on a US bank.
• Please include a delivery address label to speed service.

International orders: please indicate your country name.

UNIX C Source Version of STAT: $20/30
C Language Source Code & Online Manual Entries

1/2 inch 9 track mag tape, 1600 bpi tar format ($20)
1/4 inch cartridge tape, tar format ($30)

DOS Executable Version of STAT: $15
Preformatted Manuals & Executables (without Source Code) ($15)

2S/2D (360K) DOS 5.25" floppy diskettes
HD (1.2M) DOS 5.25" or 3.5" floppies (by special request)

DOS Turbo C Source Code Version for STAT: $10
Turbo C Language Source Code, Project Files, Online Manual

HD (1.2M) DOS 5.25"inch or 3.5" floppy diskette
Handbook (highly recommended for new users): $10

Examples, Ref. Materials, CALC & DM Manuals, Manual Entries
Typeset Manual (over 100 8.5 x 11 inch pages)

Prices include cost of media and airmail delivery worldwide.

 1986 Gary Perlman

1-2 Introduction STAT Handbook

Section 1.2 Design Philosophy

STAT programs promote a particular style of data analysis. The package is interactive and programmable.
Data analysis is typically not a single action but an iterative process in which a goal of understanding some data is
approached. Many tools are used to provide several analyses of data, and based on the feedback provided by one
analysis, new analyses are suggested.

The design philosophy of STAT is easy to summarize. STAT consists of several separate programs that
can be used apart or together. The programs are called and combined at the command level, and common analyses
can be saved in files using UNIX shell scripts or MSDOS batch files.

Understanding the design philosophy behind STAT programs makes it easier to use them. STAT
programs are designed to be tools, used with each other, and with standard UNIX and MSDOS tools. This is
possible because the programs make few assumptions about file formats used by other programs. Most of the
programs read their inputs from the standard input (what is typed at the keyboard, unless redirected from a file), and
all write to the standard output (what appears on the screen, unless saved to a file or sent to another program). The
data formats are readable by people, with fields (columns) on lines separated by white space (blank spaces or tabs).
Data are line-oriented, so they can be operated on by many programs. An example of a filter program on UNIX and
MSDOS that can be used with the STAT programs is the sor t utility, which puts lines in numerical or
alphabetical order. The following command sorts the lines in the file inp ut and saves the result in the file
sor ted.

sor t < inp ut > sor ted

The < symbol causes sor t to read from inp ut and the > causes sor t to write to the file sor ted.
Because sor t exists on UNIX and MSDOS, it is not necessary to duplicate its function in STAT, which does
not duplicate existing tools. (In all following examples, thi s fon t wil l be use d to show text (e.g.,
commands and program names) that would be seen by people using the programs.

User efficiency is supported over program efficiency. That does not mean the programs are slow, but ease-
of-use is not sacrificed to save computer time. Input formats are simple and readable by people. There is extensive
checking to protect against invalid analyses. Output formats of analysis programs are designed to be easy to
understand. Data manipulation programs are designed to produce uncluttered output that is ready for input to other
programs.

On UNIX and MSDOS, a filter is a program that reads from the standard input, also called std in (the
keyboard, unless redirected from a file) and writes to the standard output, also called std out (the screen, unless
redirected to a file). Most STAT programs are filters. They are small programs that can be used alone, or with
other programs. STAT users typically keep their data in a master data file. With data manipulation programs,
extractions from the master data file are transformed into a format suitable for input to an analysis program. The
original data do not change, but copies are made for transformations and analysis. Thus, an analysis consists of an
extraction of data, optional transformations, and some analysis. Pictorially, this can be shown as:

dat a | ext rac t | tra nsf orm | for mat | ana lys is | res ult s

where a copy a subset of the data has been extracted, transformed, reformatted, and analyzed by chaining several
programs. Data manipulation functions, sometimes built into analysis programs in other packages, are distinct
programs in STAT. The use of pipelines, signaled with the pipe symbol, |, is the reason for the name STAT.

 1986 Gary Perlman

STAT Handbook Introduction 1-3

Section 1.3 Table of STAT Programs

STAT programs are divided into two categories. There are programs for data manipulation: data
generation, transformation, formatting, extraction, and validation. And there are programs for data analysis:
summary statistics, inferential statistics, and data plots. The data manipulation programs can be used for tasks
outside of statistics.

Data Manipulation Programs
abu t join data files beside each other
col ex column extraction/formatting
dm conditional data extraction/transformation
dso rt multiple key data sorting filter
lin ex line extraction
mak etr ix create matrix format file from free-format input
per m permute line order randomly, numerically, alphabetically
pro bdi st probability distribution functions
ran kso rt convert data to ranks
rep eat repeat strings or lines in files
rev ers e reverse lines, columns, or characters
ser ies generate an additive series of numbers
tra nsp ose transpose matrix format input
val ida ta verify data file consistency

Data Analysis Programs
ano va multi-factor analysis of variance
cal c interactive algebraic modeling calculator
con tab contingency tables and chi-square
des c descriptions, histograms, frequency tables
dpr ime signal detection d’ and beta calculations
fea tur es display features of items
one way one-way anova/t-test with error-bar plots
pai r paired data statistics, regression, scatterplots
ran kin d rank order analysis for independent conditions
ran kre l rank order analysis for related conditions
reg res s multiple linear regression and correlation
sta ts simple summary statistics
ts time series analysis and plots

 1986 Gary Perlman

1-4 Introduction STAT Handbook

Section 1.4 Table of UNIX and MSDOS Utilities

The UNIX and MSDOS environments are similar, at least as far as STAT is concerned, but many
command names differ. The following table shows the pairing of UNIX names with their MSDOS equivalents.

UNIX MSDOS Purpose
cat typ e print files to stdout
cd, pwd cd change/print working directory
cp cop y copy files
dif f com p compare and list file differences
ech o ech o print text to standard output
gre p fin d search for pattern in files
ls dir list files in directory
mkd ir mkd ir create a new directory
mor e mor e paginate text on screen
mv ren ame move/rename files
pri nt pri nt print files on printer
rm del ,er ase remove/delete files
rmd ir rmd ir remove an empty directory
sor t sor t sort lines in files

she ll- scr ipt bat ch- fil e programming language
$1, $2 %1, %2 variables
/de v/t ty con terminal keyboard/screen
/de v/n ull nul empty file, infinite sink

 1986 Gary Perlman

CHAPTER 2

Annotated Example

2.1 A Familiar Problem ... 2-1
2.2 Computing Final Scores .. 2-2
2.3 Summary of Final Scores .. 2-3
2.4 Predicting Final Exam Scores ... 2-4

Predicted Plot
Residual Plot

2.5 Failures by Assistant and Gender .. 2-6
2.6 Effects of Assistant and Gender ... 2-8

A concrete example with several STAT programs is worked in detail. The example shows the style of analysis in
STAT. New users of STAT should not try to understand all the details in the examples. Details about all the
programs can be found in on-line manual entries and more examples of program use appear in following chapters.
Explanations about features common to all STAT programs can be found in the next chapter.

 1986 Gary Perlman

STAT Handbook Annotated Example 2-1

Section 2.1 A Familiar Problem

To show the STAT style of interactive data analysis, I will work through a concrete example. The
example is based on a familiar problem: grades in a course based on two midterm exams and a final exam. Scores
on exams will be broken down by student gender (male or female) and by the lab section taught by one of two
teaching assistants: John or Jane. Assume the following data are in the file exa m.d at. Each line in the file
includes a student identification number, the student’s section’s teaching assistant, the student’s gender, and the
scores (out of 100) on the two midterm exams and the final.

S-1 joh n mal e 56 42 58
S-2 joh n mal e 96 90 91
S-3 joh n mal e 70 59 65
S-4 joh n mal e 82 75 78
S-5 joh n mal e 85 90 92
S-6 joh n mal e 69 60 65
S-7 joh n fem ale 82 78 60
S-8 joh n fem ale 84 81 82
S-9 joh n fem ale 89 80 68
S-1 0 joh n fem ale 90 93 91
S-1 1 jan e mal e 42 46 65
S-1 2 jan e mal e 28 15 34
S-1 3 jan e mal e 49 68 75
S-1 4 jan e mal e 36 30 48
S-1 5 jan e mal e 58 58 62
S-1 6 jan e mal e 72 70 84
S-1 7 jan e fem ale 65 61 70
S-1 8 jan e fem ale 68 75 71
S-1 9 jan e fem ale 62 50 55
S-2 0 jan e fem ale 71 72 87

We are interested in computing final grades based on the exam scores, and comparing the performances of
males versus females, and of the different teaching assistants. The following analyses can be tried by typing in the
above file and running the commands in the examples. Minor variations on the example commands will help show
how the programs work.

 1986 Gary Perlman

2-2 Annotated Example STAT Handbook

Section 2.2 Computing Final Scores

Computing final scores is easy with the data manipulation program dm. Assume that the first midterm is
worth 20 percent, the second 30 percent, and the final exam, 50 percent. The following command tells dm to
repeat each input line with INP UT, and then print the weighted sum of columns 4, 5, and 6, treated as numbers.
To print numbers, dm uses an x before the column number. The input to dm is read from the file
exa m.d at and the result is saved in the file sco res .da t. Once all the original data and the final scores
are in sco res .da t, only that file will be used in following analyses.

dm INP UT ".2 *x4 + .3* x5 + .5* x6" < exa m.d at > sco res .da t

The standard input is redirected from the file exa m.d at with the < on the command line. Similarly, the
standard output, which would ordinarily go to the screen, is redirected to the file sco res .da t with the > on
the command line. The second expression for dm is in quotes. This allows the insertion of spaces to make the
expression more readable, and to make sure that any special characters (e.g., * is special to UNIX shells) are
hidden from the command line interpreter. The output from the above command, saved in the file
sco res .da t, would begin with the following.

S-1 joh n mal e 56 42 58 52. 8
S-2 joh n mal e 96 90 91 91. 7
S-3 joh n mal e 70 59 65 64. 2
S-4 joh n mal e 82 75 78 77. 9
S-5 joh n mal e 85 90 92 90
S-6 joh n mal e 69 60 65 64. 3
etc.

This could be sorted by final grade by reversing the columns and sending the output to the standard UNIX or
MSDOS sor t utility program using the ‘‘pipe’’ symbol |.

rev ers e -f < sco res .da t | sor t

The above command would produce the following output.

27. 1 34 15 28 mal e jan e S-1 2
40. 2 48 30 36 mal e jan e S-1 4
52. 8 58 42 56 mal e joh n S-1
54. 7 65 46 42 mal e jan e S-1 1
54. 9 55 50 62 fem ale jan e S-1 9
...

79. 3 87 72 71 fem ale jan e S-2 0
82. 1 82 81 84 fem ale joh n S-8
90 92 90 85 mal e joh n S-5
91. 4 91 93 90 fem ale joh n S-1 0
91. 7 91 90 96 mal e joh n S-2

To restore the order of the fields, rev ers e could be called again. Another way, more efficient, would be to use
the dso rt filter to sort based on column 7:

dso rt 7 < sco res .da t

 1986 Gary Perlman

STAT Handbook Annotated Example 2-3

Section 2.3 Summary of Final Scores

des c prints summary statistics, histograms, and frequency tables. The following command takes the final scores
(the weighted average from the previous section).

dm s7 < sco res .da t

Summary order statistics are printed with the -o option and the distribution is tested against the passing grade of
75 with the -t 75 option. des c makes a histogram (the -h option) with 10 point intervals (the -i 10
option) starting at a minimum value of 0 (the -m 0 option).

dm s7 < sco res .da t | des c -o -t 75 -h -i 10 -m 0

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Und er Ran ge In Ran ge Ove r Ran ge Mis sin g Sum

0 20 0 0 135 9.2 00
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Mea n Med ian Mid poi nt Geo met ric Har mon ic
67. 960 68. 750 59. 400 65. 564 62. 529

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
SD Qua rt Dev Ran ge SE mea n

16. 707 10. 575 64. 600 3.7 36
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Min imu m Qua rti le 1 Qua rti le 2 Qua rti le 3 Max imu m
27. 100 57. 450 68. 750 78. 600 91. 700

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Ske w SD Ske w Kur tos is SD Kur t

-0. 586 0.5 48 2.8 44 1.0 95
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Nul l Mea n t pro b (t) F pro b (F)
75. 000 -1. 884 0.0 75 3.5 51 0.0 75

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Mid pt Fre q
5.0 00 0

15. 000 0
25. 000 1 *
35. 000 0
45. 000 1 *
55. 000 4 *** *
65. 000 5 *** **
75. 000 5 *** **
85. 000 2 **
95. 000 2 **

 1986 Gary Perlman

2-4 Annotated Example STAT Handbook

Section 2.4 Predicting Final Exam Scores

The next analysis predicts final exam scores with those of the two midterm exams. The reg res s
program assumes its input has the predicted variable in column 1 and the predictors in following columns. dm
can extract the columns in the correct order from the file sco res .da t. The command for dm looks like this.

dm x6 x4 x5 < sco res .da t

The output from dm looks like this.

58 56 42
91 96 90
65 70 59
78 82 75
92 85 90
65 69 60
60 82 78
etc.

This is the correct format for input for reg res s, which is given mnemonic names for the columns. The -e
option tells reg res s to save the regression equation in the file reg res s.e qn for a later analysis.

dm x6 x4 x5 < sco res .da t | reg res s -e fin al mid ter m1 mid ter m2

The output from reg res s includes summary statistics for all the variables, a correlation matrix (e.g., the
correlation of mid ter m1 and mid ter m2 is .9190), the regression equation relating the predicted variable,
and the significance test of the multiple correlation coefficient. The squared multiple correlation coefficient of
0.7996 shows a strong relationship between midterm exams and the final.

Ana lys is for 20 cas es of 3 var iab les :
Var iab le fin al mid ter m1 mid ter m2
Min 34. 000 0 28. 000 0 15. 000 0
Max 92. 000 0 96. 000 0 93. 000 0
Sum 140 1.0 000 135 4.0 000 129 3.0 000
Mea n 70. 050 0 67. 700 0 64. 650 0
SD 15. 350 2 18. 672 0 20. 430 3

Cor rel ati on Mat rix :
fin al 1.0 000
mid ter m1 0.7 586 1.0 000
mid ter m2 0.8 838 0.9 190 1.0 000
Var iab le fin al mid ter m1 mid ter m2

Reg res sio n Equ ati on for fin al:
fin al = -0. 283 5 mid ter m1 + 0.9 022 mid ter m2 + 30. 917 7

Sig nif ica nce tes t for pre dic tio n of fin al
Mul t-R R-S qua red SEe st F(2 ,17) pro b (F)
0.8 942 0.7 996 7.2 640 33. 922 8 0.0 000

Predicted Plot
We can look at the predictions from the regression analysis. From the analysis above, the file reg res s.e qn
contains a regression equation for dm.

s1
(x2 * -0. 283 512 ...) + (x3 * 0.9 021 82. ..) + 30. 917 7.. .

Extra precision is used in reg res s.e qn, compared to the equation in the output from reg res s to allow

 1986 Gary Perlman

STAT Handbook Annotated Example 2-5

more accurate calculations. These two expressions, one on each line, are the obtained and predicted final exam
scores, respectively. To plot these against each other, we duplicate the input used to reg res s, and process
reg res s’s output with dm, reading its expressions from the expression file reg res s.e qn that follows
the letter E. The result is passed through a pipe to the paired data analysis program pai r with the plotting
option -p, options to control the height and width of the plot, the -h and -w options, and -x and -y
options to label the plot.

dm x6 x4 x5 < sco res .da t | dm Ere gre ss. eqn |
pai r -p -h 10 -w 30 -x fin al -y pre dic ted

|-- --- --- --- --- --- --- --- --- --- -|8 9.3 045
| 3|
| 1 1 |
| 1 1 11 1 1 |
| |
| 1 2 1 |pr edi cte d
| 1 1 |
| 1 |
| 1 |
| |
|1 |
|-- --- --- --- --- --- --- --- --- --- -|3 6.5 121
34. 000 92. 000

fin al r= 0.8 94

Residual Plot
To plot the residuals (deviations) from prediction, you can run the data through another pass of dm to subtract the
predicted scores from the obtained. Note that r must be zero.

dm x6 x4 x5 < sco res .da t | dm Ere gre ss. eqn | dm x2 x1- x2 |
pai r -p -h 10 -w 30 -x pre dic ted -y res idu als

|-- --- --- --- --- --- --- --- --- --- -|1 1.2 546
| 11 |
| 1 |
| 1 1 1 1 1|
| 1 1 1 1|
|1 1 1 |re sid ual s
| 1 1 |
| 1 |
| 1 |
| |
| 1 |
|-- --- --- --- --- --- --- --- --- --- -|- 18. 039 9
36. 512 89. 304

pre dic ted r= 0.0 00

 1986 Gary Perlman

2-6 Annotated Example STAT Handbook

Section 2.5 Failures by Assistant and Gender

Now suppose the passing grade in the course is 75. To see how many people of each sex in the two
sections passed, we can use the con tab program to print contingency tables. First dm extracts the columns
containing teaching assistant, gender, and the final grade (the weighted average computed earlier). Rather than
include the final grade, a label indicating pass or fail is added, as appropriate.

dm s2 s3 "if x7 >= 75 the n ’pa ss’ els e ’fa il’ " 1 < sco res .da t

The huge third expression says ‘‘if the final grade is greater than or equal to 75, then insert the string pas s, else
insert the string fai l.’’ Such expressions can be placed in files rather than be typed on the command line, and
usually dm is used for simpler expressions. The fourth expression is the constant 1 used to tell con tab that
there was one replication for each combination of factor levels. Part of the output from dm follows.

joh n mal e fai l 1
joh n mal e pas s 1
joh n mal e fai l 1

...
jan e fem ale fai l 1
jan e fem ale fai l 1
jan e fem ale pas s 1

This is used as input to con tab, which is given mnemonic factor names.

dm s2 s3 "if x7 >= 75 the n ’pa ss’ els e ’fa il’ " 1 < sco res .da t |
con tab ass ist ant gen der suc ces s cou nt

Parts of the output from this command follow. First, there is a summary of the input, which contained three factors,
each with 2 levels, and a sum of observation counts.

FAC TOR : ass ist ant gen der suc ces s cou nt
LEV ELS : 2 2 2 20

The first contingency table does not provide new information. It shows that both Jane’s section and John’s section
had 6 male and 4 female students.

SOU RCE : ass ist ant gen der
mal e fem ale Tot als

joh n 6 4 10
jan e 6 4 10
Tot als 12 8 20

The second contingency table tells us that 12 of 20 students failed the course--4 in John’s section and 8 in Jane’s. A
significance test follows, and the warning about small expected frequencies suggests that the chi-square test for
independence might be invalid. No matter, the Fisher exact test applies because we are dealing with a 2x2 table and
total frequencies less than 100. It does not show a significant association of factors (ie. Jane’s section did not do
significantly better than John’s).

SOU RCE : ass ist ant suc ces s
fai l pas s Tot als

joh n 4 6 10
jan e 8 2 10
Tot als 12 8 20

 1986 Gary Perlman

STAT Handbook Annotated Example 2-7

Ana lys is for ass ist ant x suc ces s:
NOT E: Yat es’ cor rec tio n for con tin uit y app lie d
WAR NIN G: 2 of 4 cel ls had exp ect ed fre que nci es < 5
chi sq 1.8 750 00 df 1 p 0.1 709 04
Fis her Exa ct One -Ta ile d Pro bab ili ty 0.0 849 01
Fis her Exa ct Two -Ta ile d Pro bab ili ty 0.1 698 02
phi Coe ffi cie nt == Cra mer ’s V 0.3 061 86
Con tin gen cy Coe ffi cie nt 0.2 927 70

The third contingency table shows that 8 male students and 4 female students failed the course.

SOU RCE : gen der suc ces s
fai l pas s Tot als

mal e 8 4 12
fem ale 4 4 8
Tot als 12 8 20

The final table, the three-way interaction, shows all the effects listed above, but no significance test is computed by
con tab. Some hints about the reason for the poorer performance of Jane’s section follow from the next section’s
analysis of variance.

SOU RCE : ass ist ant gen der suc ces s
ass ist an gen der suc ces s

joh n mal e fai l 3
joh n mal e pas s 3
joh n fem ale fai l 1
joh n fem ale pas s 3
jan e mal e fai l 5
jan e mal e pas s 1
jan e fem ale fai l 3
jan e fem ale pas s 1

 1986 Gary Perlman

2-8 Annotated Example STAT Handbook

Section 2.6 Effects of Assistant and Gender

We now want to compare the performance of the two teaching assistants and of male versus female
students. We are interested to see how an assistant’s students progress through the term. ano va, the analysis of
variance program, is the program to analyze these data, but we have to get the data into the correct format for input
to ano va. ano va assumes that there is only one datum per line, preceded by the levels of factors under
which it was obtained. This is unlike the format of sco res .da t, which has the three exam scores after the
student number, teaching assistant name, and gender. Several transformations are needed to get the data in the
correct format. As an example, the data for student 1:

S-1 joh n mal e 56 42 58

must be transformed to:

S-1 joh n mal e m1 56
S-1 joh n mal e m2 42
S-1 joh n mal e fin al 58

This is made up of three replications of the labels with new labels, m1, m2, and fin al, for the exams
inserted. First, dm extracts and inserts the desired information. The result is a 15 column output, one for each
expression. Note that on UNIX, it is necessary to quote the quotes of the labels for the exam names. To insert the
newlines, so that each datum is on one line, the program mak etr ix reformats the input to ano va into 5
columns. Finally, mnemonic labels for factor names are given to ano va.

dm s1 s2 s3 "’m 1’" s4 ...
s1 s2 s3 "’m 2’" s5 ...
s1 s2 s3 "’f ina l’" s6 < sco res .da t |
mak etr ix 5 | ano va stu den t ass ist ant gen der exa m sco re

Only parts of the output are shown below. First, John’s students did better than Jane’s students (F(1,16)=8.311,
p=.011).

joh n 76. 700 0
jan e 58. 233 3

Female students scored better than males, although the effect is not statistically significant (F(1,16)=3.102, p=.097).

mal e 62. 861 1
fem ale 74. 375 0

There was no interaction between these two factors (F(1,16)=.289), but there were some interactions between section
assistant and gender and the different exam grades. If we look at the interaction of section assistant and exam, we
get a better picture of the performances of John and Jane.

SOU RCE : ass ist ant exa m
ass ist a exa m N MEA N SD SE
joh n m1 10 80. 300 0 11. 935 5 3.7 743
joh n m2 10 74. 800 0 16. 376 1 5.1 786
joh n fin al 10 75. 000 0 13. 424 7 4.2 453
jan e m1 10 55. 100 0 15. 516 7 4.9 068
jan e m2 10 54. 500 0 19. 597 3 6.1 972
jan e fin al 10 65. 100 0 16. 210 1 5.1 261

This is the first full cell-means table shown. It contains the names of factors and levels, cell counts, means, standard
deviations, and standard errors. The results show that John’s students started higher than Jane’s (80.3 versus 55.1),
and that over the term, Jane’s students improved while John’s got worse. The significance test for the interaction
looks like this.

 1986 Gary Perlman

STAT Handbook Annotated Example 2-9

SOU RCE SS df MS F p
=== === === === === === === === === === === === === === === === =
ae 610 .43 33 2 305 .21 67 9.5 02 0.0 01 ***
es/ ag 102 7.8 889 32 32. 121 5

A Scheffe confidence interval around the difference between two means of this interaction can be found with the
following formula.

sqr t (df 1 * cri tf * MSe rro r * 2 / N)

df1 is the degrees of freedom numerator, cri tf is the critical F-ratio given the degrees of freedom and
confidence level desired, MSe rro r is the mean-square error for the overall F-test, and N is the number of
scores going into each cell. The critical F ratio for a 95% confidence interval based on 2 and 32 degrees of freedom
can be found with the pro bdi st program.

pro bdi st cri t F 2 32 .05
3.2 945 37

Then, the calculator program cal c can be used interactively to substitute the values.

CAL C: sqr t (2 * 3.2 945 37 * 32. 121 5 * 2 / 10)
sqr t(((((2 * 3.2 945 4) * 32. 121 5) * 2) / 10)) = 6.5 061 7

Any difference of two means in this interaction greater than 6.5 is significant at the .05 level.

There was a similar pattern of males versus females on the three exams. Males started out lower than
females, and males improved slightly while females stayed about the same.

SOU RCE : gen der exa m
gen der exa m N MEA N SD SE
mal e m1 12 61. 916 7 20. 782 2 5.9 993
mal e m2 12 58. 583 3 22. 593 1 6.5 221
mal e fin al 12 68. 083 3 17. 132 9 4.9 459
fem ale m1 8 76. 375 0 11. 147 5 3.9 413
fem ale m2 8 73. 750 0 13. 155 7 4.6 512
fem ale fin al 8 73. 000 0 12. 716 7 4.4 960

After the cell means in the output from ano va is a summary of the design, followed by an F-table, parts of which
were seen above.

FAC TOR : stu den t ass ist ant gen der exa m sco re
LEV ELS : 20 2 2 3 60
TYP E : RAN DOM BET WEE N BET WEE N WIT HIN DAT A

The results of the analysis show that John’s section did better than Jane’s. That must be qualified because it
seems that Jane’s students may not have been as good as John’s. To Jane’s credit, her students improved more than
John’s during the term.

 1986 Gary Perlman

CHAPTER 3

Conventions

3.1 Command Line Interpreters ... 3-1
Special Characters

3.2 Command Formats .. 3-2
Simple Commands
Pipelines of Commands
Batch Files and Shell Scripts

3.3 Program Options ... 3-3
Standard Options

3.4 File Inputs and Outputs .. 3-4
Keyboard Input

3.5 Input Formats .. 3-5
Suggestion: Staged Analysis
Data Types
Caveat: Appearances Can Be Deceiving

3.6 Limits and Error Messages ... 3-6
Common Error Messages

3.7 Manual Entries ... 3-7
On-Line Manuals
UNIX Manual Conventions

Features common to all the STAT programs are covered. This information makes it easier to learn about new
STAT programs, and serves as a reference for experienced users.

 1986 Gary Perlman

STAT Handbook Conventions 3-1

Section 3.1 Command Line Interpreters

STAT analyses consist of a series of commands, each on a single line, hence the name command line.
Commands are typed by users into a command line interpreter, itself a program that runs the commands typed in.
On MSDOS, there is no special name given to the command line interpreter. On UNIX, the command line
interpreters are called shells, and there are several of them. Users are expected to know the conventions of their
command line interpreters. Some of the examples in this handbook and in the manual entries will not work because
of differences in how command lines are formatted. Minor modifications to the examples are sometimes needed.

Some command line interpreters support in-line editing, which is useful when running STAT analyses
because data analysis is an iterative process in which minor changes in analyses, and hence commands, are common.

Special Characters
Command line interpreters have special characters to perform special tasks. On both MSDOS and UNIX, there are
special characters for file input, output, and pipe redirection:

< redirect standard input from the following file
> redirect standard output to the following file
| redirect standard output to the following command

UNIX and MSDOS both have patterns (sometimes called ‘‘wildcards’’) to match file names. For example, *.c
matches all files that end with a c suffix. Also, the ? can be used in patterns to match any one character. An
important difference between UNIX and MSDOS command line interpreters is that on UNIX, the pattern matching
is part of the shell, and so is available to every program, while on MSDOS, it is part of only some programs.

It is sometimes necessary to quote the special meaning of special characters so that they are not seen by the
command line interpreter. For example, an expression for dm might contain the symbols * for multiplication or
< for comparison. Both these characters are special to UNIX shells, while only < is special to MSDOS. The blank
space and tab characters are special on both UNIX and MSDOS, and are used to separate command line arguments.
Special characters can be quoted by enclosing command line arguments in double quotes. For example, dm
expressions may contain special characters, and strings may contain spaces.

dm "if x1 > 10 the n ’La rge num ber on lin e:’ els e SKI P" INL INE

 1986 Gary Perlman

3-2 Conventions STAT Handbook

Section 3.2 Command Formats

STAT programs are run on UNIX and MSDOS by typing the name of the program, program options, and
program operands (e.g., expressions or file names). Program names, options, and operands, are separated or
delimited by blank space. On UNIX, program names are lower case, while on the case-insensitive MSDOS, they are
always upper case, although users can type the names in lower case. Program options and operands can be complex,
so it is sometimes useful to insert spaces into an option value or an operand, either to modify the output or to make
the command line more readable. This is done by quoting (with double quotes) the parts that should be kept
together.

Simple Commands
A simple command consists of a program name, program options delimited with minus signs, and program
operands, such as file or variable names. Here are some examples:

dm x1+ x2 x3/ x4
cal c mod el
reg res s -p age hei ght wei ght
des c -h -i 1 -m 0 -cf p
ser ies 1 100 .5
pro bdi st ran dom nor mal 100

Pipelines of Commands
A pipeline of commands is a series of simple commands joined by the pipe symbol, |. In a pipeline, the output
from one simple command is the input to the next command in the pipeline. The following pipeline creates a series
of numbers from 1 to 100, transforms it by using the dm logarithm function, and then makes a histogram of the
result.

ser ies 1 100 | dm log x1 | des c -h

The following pipeline abuts three files beside one another, and passes the result to the reg res s program,
which prints their correlation matrix.

abu t age hei ght wei ght | reg res s -r age hei ght wei ght

Note that the operands to abu t are file names, while those for reg res s are variable names, which could be
different if desired. If they were always supposed to be the same, then this constraint could be encoded in a shell
script or batch file.

Batch Files and Shell Scripts
Because the STAT programs work well together, and because most data analysis is routine, it is often advantageous
to save a series of commands in a file for later analyses. Both UNIX and MSDOS support this, MSDOS with batch
files and UNIX with shell scripts. Batch files and shell scripts also support variables, some set by command line
calls and some set inside the command file. They provide STAT with a simple but effective programming facility.

 1986 Gary Perlman

STAT Handbook Conventions 3-3

Section 3.3 Program Options

Program options allow the user to control how a program works by requesting custom or extra analysis.
Without options, STAT programs provide the simplest or most common behavior by default. Program options
conform to the standard UNIX option parsing convention (Hemenway & Armitage, 1984) by using the get opt
option parser. In this standard, all program options are single characters preceded by a minus sign. For example,
-a and -X are both options. All program options must precede operands (such as file names, variable names, or
expressions). Some options require values, and these should follow the option. For example, the pai r plotting
function allows setting the height of the plot with the -h option: -h 30 would set the plot height to 30 lines.
There should be a space between an option and its value. Options that do not take values (logical options) can be
grouped or ‘‘bundled’’ to save typing. For example, the descriptive statistics program, des c, has options for
requesting a histogram, a table of frequencies, and a table of proportions. These can be requested with the bundle of
options: -hf p instead of the longer: -h -f -p.

There are some special conventions used with the get opt option parser. A double dash, --, by itself
signals the end of the options, which can be useful when the first operand begins with - and it would be
misinterpreted as an option. For programs that take files as operands (e.g., abu t, cal c), a solitary - means
to read from the standard input, which can be useful to insert the output of a pipeline in a set of files. For example,
the abu t program can read several files with the standard input inserted with the following command line.

ser ies 1 20 | abu t fil e1 fil e2 - fil e3

The output would be four columns, the third of which would be the series 1 to 20.

The same options can usually be specified more than once on a command line. For logical options (those
that turn on or off a feature), repetition usually has no effect. For options that take values, such as the width of a
plot, respecifying an option resets it to a new value. Exceptions to these rules for specific options are mentioned in
program manual entries.

Table of Option Rules
-x options are single letters preceded by minus
-h 30 option values must follow the option after a space
-nv e logical options can be bundled
-- signals the end of the options
- insert standard input to operands of file-reading program

Standard Options
All STAT programs using the standard option parser, get opt, have standard options to get information online.
The information reported by the program is always accurate, while the printed documentation may not be up to date,
or may not apply to the particular version (e.g., limits on MSDOS may be smaller than on UNIX).

-L prints a list of program limits
-O prints a summary of program options
-V prints version information

 1986 Gary Perlman

3-4 Conventions STAT Handbook

Section 3.4 File Inputs and Outputs

Most of the STAT programs are filters. That means they read from the standard input and write to the
standard output. By default, the standard input is the keyboard, and the standard output is the screen. The standard
input and output can independently be ‘‘redirected’’ using the special characters: <, to redirect the standard input
from an immediately following file name, >, to redirect the standard output to a file. Also, the pipe character |,
can connect the output from one program to the input to another. (Some of these features are not available on early
versions of MSDOS (before version 2.0).) The following command says for the ano va program to read from the
file ano va. in.

ano va < ano va. in

The output would go to the screen, by default. The following command saves the above output to the file
ano va. out.

ano va < ano va. in > ano va. out

Never do this:

ano va < dat a > dat a # Nev er Do Thi s!

Never make the input file the same as the output file, or you will lose the file; the output file is created (and zeroed)
by the command line interpreter before the input file is read. Temporary files should be used instead. Here is an
example of output redirection to save 50 random normal numbers.

pro bdi st ran dom nor mal 50 > num ber s

In English, this is read: ‘‘A random sample of 50 numbers is created and saved in the file num ber s. This file of
numbers could be used as input to the descriptive statistics program, des c. The intermediate file, num ber s,
could be avoided by using a pipeline.

pro bdi st ran dom nor mal 50 | des c

To save the result of the above analysis in a file called res ult s, output redirection would be used.

pro bdi st ran dom nor mal 50 | des c > res ult s

Although pipes are supported on MSDOS, they are not efficient and they require that there is enough space
for temporary files to hold the contents of the pipes (temporary files with names like PIP E%1 .$$ $). This can
make input and output redirection without pipes a better choice for speed, especially in command scripts, called
‘‘batch files’’ on MSDOS.

Keyboard Input
If a program is expecting input from the keyboard (ie. the standard input has not been redirected from a file or pipe),
a prompt will be printed on the screen. Often, input from the keyboard is a mistake; most people do not type directly
into an analysis program but prepare a file with their preferred editor and use that file as input.

pro mpt : des c
des c: rea din g inp ut fro m ter min al:
user types input, followed by end of file: ˆD on UNIX, ˆZ on MSDOS

In all examples of keyboard input, the sequence ˆX will be used for control characters like control-x (hold down
the CTR L key and type the letter x). On UNIX, end of input from the keyboard is signaled by typing ˆD.
MSDOS users type ˆZ.

 1986 Gary Perlman

STAT Handbook Conventions 3-5

Section 3.5 Input Formats

STAT programs have simple input formats. Program input is read until the end of file, EOF, is found.
End of file in disk files is done by the system; no special marking characters are needed nor allowed.

Input fields (visibly distinguishable words) are separated by whitespace (blank spaces, tabs, newlines).
For most programs, fields in lines with embedded spaces can be enclosed by single or double quotes. Most STAT
analysis programs ignore blank input lines used to improve the human-readability of the data. However, blank lines
are meaningful to some data manipulation programs, so when there are unexpected results, it is often instructive to
run a file through val ida ta.

Suggestion: Staged Analysis
It is usually a good idea to build a complex command, such as a pipeline, in stages. At each stage, a quick visual
inspection of the output catches most errors you might make.

Data Types
STAT programs recognize several types of data: label and variable names, numbers (integers and real numbers),
and some programs can deal with missing values, denoted by NA. Label and variable names begin with an
alphabetic character (a-z or A-Z), and can be followed by any number of alphanumerics (a-z, A-Z, 0-9) and
underscores. There are three types of numbers: integers, real numbers with a decimal point, and numbers in
exponential scientific notation. Integers are positive or negative numbers with no decimal point, or if they have a
decimal point, they have no non-zero digits after the decimal point. Exponential notation numbers are numbers of
the form xxx .yy yEz z. They may have digits before an optional decimal point or after it, and the number after
the E or e is a power of ten multiplier. For example, 1.2 e-6 is 1.2 times the inverse of one million.

Caveat: Appearances Can Be Deceiving
Inputs that look like they line up might not appear so to STAT programs. For example, the following data might
appear to have four columns, but have a variable number. Also, the columns that look like they line up to a person,
do not line up to STAT programs.

a b c d
e f g
h i j

Here is how STAT programs see this input:

a b c d
e f g
h i j

This difference could be found with the val ida ta utility program, which would report for both formats above:

val ida ta: Var iab le num ber of col umn s at lin e 2
Col N NA aln um alp ha int flo at oth er typ e min max

1 3 0 3 3 0 0 0 aln um 0 0
2 3 0 3 3 0 0 0 aln um 0 0
3 3 0 3 3 0 0 0 aln um 0 0
4 1 0 1 1 0 0 0 aln um 0 0

 1986 Gary Perlman

3-6 Conventions STAT Handbook

Section 3.6 Limits and Error Messages

There is a system-dependent limit on the count of characters in an input line: on small systems, 512
characters, and on large ones, 1024. Many programs use dynamic memory allocation so the memory available on a
machine will determine the size of data sets that can be analyzed. Integer overflow is not checked, so numbers like
data counts are limited on 16 bit machines to 32767; in practice, this has not presented problems. All calculations
are done with double precision floating point numbers, but overflow (exceeding the maximum allowed double
precision number, about 10 to the 38th power) and underflow (loss of precision of a tiny non-zero result being
rounded to 0.0) are not checked. Program specific limits can be found in most programs with the -L option. The
programs are not robust when used on highly variable data (differences of several orders of magnitude), very large
numbers, or large datasets (more than 10,000 values).

All error and warning messages (1) identify the program detecting the problem (useful when pipelines or
command scripts are used), (2) print diagnostic information, (3) sound a bell, and for errors, (4) cause an exit. All
error and warning messages are printed on the diagnostic output (that is std err for C lovers), so they will be
seen even if the standard output is redirected to a file. All STAT programs exit with a non-zero exit status on error
and a zero exit status after a successful run.

Common Error Messages
Some errors and messages are common to several programs. They are explained below. Other messages should be
self-explanatory.

Not eno ugh (or no) inp ut dat a
There were no data points read, or not enough to make sense

Too man y xxx x’s ; at mos t N all owe d
Too many of something were in the input (e.g., columns or variables)

Can not ope n ’fi le’
The named file could not be opened for reading

No sto rag e spa ce lef t for xxx x
The program has run out of dynamic memory for internal storage

´st rin g’ (de scr ipt ion) is not a num ber
The described object whose input value was ’string’ was non-numerical

N ope ran d(s) ign ore d on com man d lin e
Operands (e.g., files) on the command line are ignored by this program

VAL UE is an ill ega l val ue for the TYP E
The provided value was out of the legal range for the given type

Rag ged inp ut fil e
The program expects a uniform number of input columns

 1986 Gary Perlman

STAT Handbook Conventions 3-7

Section 3.7 Manual Entries

STAT manual entries contain detailed information about each of the programs. They describe the effects
of all the options.

On-Line Manuals
On UNIX systems, the manual entries for STAT programs are available online with the man sta t program.
UNIX system administrators might prefer to install the STAT manuals in a public place, so they might be available
with the standard UNIX man program. On MSDOS systems, manual entries might be available online with a
batch file that types pre-formatted manuals. The following will print the online manual for the ano va program.

man sta t ano va

Most programs print a summary of their options with the -O option. The following will print a summary of the
options available with the des c descriptive statistics program.

des c -O

UNIX Manual Conventions
UNIX manual entries are often considered cryptic, especially for new users. It helps to know the conventions used
in writing manual entries. In the following table, the contents of the different manual entry sections are summarized.

ALG ORI THM S
sources or descriptions of algorithms

BUG S
limitations or known deficiencies in the program

DES CRI PTI ON
details about the workings of the program,
and information about operands

EXA MPL ES
examples of command lines showing expected use of the program

FIL ES
files used by the program (e.g., temporary files)

LIM ITS
limits built into the program should be determined with the -L option

NAM E
the name and purpose of the program

OPT ION S
detailed information about command line options (see the -O option)

SYN OPS IS
a short summary of the option/operand syntax for the program
(items enclosed in square brackets are optional)

 1986 Gary Perlman

CHAPTER 4

Data Manipulation

4.1 Data Generation/Augmentation ... 4-1
repeat: repeat a string or file
series: generate a linear series
probdist: generate random numbers
abut: number lines, recycle files
dm: number lines

4.2 Data Transformation ... 4-3
dm: conditional algebraic combinations of columns
probdist: probability/statistic conversion
ranksort: convert data to ranks

4.3 Data Formatting ... 4-5
maketrix: form a matrix format file
perm: permute lines
dsort: sort data lines by multiple keys
transpose: transpose matrix format file
reverse: reverse lines, columns, characters
colex: reorder columns, reformat columns
dm: reorder columns
abut: paste corresponding lines from files

4.4 Data Extraction .. 4-8
dm: conditional data extraction
colex: quick column extraction
linex: line extraction

4.5 Data Validation .. 4-9
validata: data validation
dm: conditional data validation

4.6 DM: Tutorial and Manual .. 4-10
Data Types
User Interface
Operations
Expression Syntax
Some Examples

All data manipulation programs are introduced, showing some of their options. Full documentation is in the manual
entries. STAT data manipulation tools allow users to generate, transform, format, extract, and validate data.
dm, the data manipulator, is the most important tool for use with other STAT programs. A detailed manual for
dm is the last section of this chapter.

There are several classes of data manipulation programs. Generation programs produce more data than their inputs
by repeating data, numbering data, or by creating new data. Transformation programs allow algebraic conversion
of data. Formatting programs change the shape or order of the data. Extraction programs produce subsets of
datasets. Validation programs check the consistency, data types, and ranges of data.

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-1

Section 4.1 Data Generation/Augmentation

repeat: repeat a string or file
rep eat can repeat strings or lines in a file as many times as requested. It helps generate labels for datasets, or
feed a program like dm that needs input to produce output. The following will repeat the file dat a 10 times.

rep eat -n 10 dat a

The following will repeat its input series of 20 numbers 15 times.

ser ies 1 20 | rep eat -n 15

Strings can be repeated using the ech o command. The following will repeat the string hel lo 100 times.

ech o hel lo | rep eat -n 100

series: generate a linear series
ser ies generates a linear series of numbers between two values. By default, its values change by units, but this
can be modified. The following produces a series of 10 numbers, 1 to 10, one per line.

ser ies 1 10

The following produces the same series, but in reverse order; the start of the series can be greater than the end.

ser ies 10 1

Non-integral series can be created by supplying an optional increment.

ser ies 0 1 .1

produces the series:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

except that each value is on its own line. The output from series can be transformed with dm to produce other than
linear series. Here is an exponential series:

ser ies 1 10 | dm "ex p(x 1)"

probdist: generate random numbers
pro bdi st can generate random numbers for several probability distributions. The following will generate 100
random numbers from the uniform distribution (between 0 and 1).

pro bdi st ran dom uni for m 100

This can be transformed using dm to get random numbers with other ranges. The following will produce 100
random integers uniformly distributed between 10 and 29.

pro bdi st ran dom uni for m 100 | dm "fl oor (x1 *20 +10)"

The following generates numbers from a one-trial binomial distribution with probability 0.5.

pro bdi st ran dom uni for m 100 | dm "if x1 > .5 the n 1 els e 0"

pro bdi st also has a binomial distribution built in, so the following would be equivalent to the previous
example:

pro bdi st ran d bin omi al 1 1/2 100

The random number generator can be seeded. The following will seed the random number generator with 143 and
generate 100 normally distributed z values.

pro bdi st -s 143 ran dom nor mal 100

 1986 Gary Perlman

4-2 Data Manipulation STAT Handbook

The seeding option is useful when a random sequence must be repeated. The random normal numbers have a mean
of 0 and a standard deviation of 1, so dm can help create different random normal distributions. The following
samples a normal distribution with mean 100 and standard deviation 15.

pro bdi st ran dom nor mal 100 | dm "x1 *15 +10 0"

abut: number lines, recycle files
abu t can number input lines in files using the -n option, or cycle through input files as many times as is
necessary to match the length of longer files. The latter case is common in creating input files for programs like
ano va and con tab, which have input data tagged with regular patterns of labels.

File1 File2 Data
lar ge eas y 12
sma ll eas y 23

har d 34
har d 45

56
67
78
89

For the above input file configuration, the command

abu t -nc Fil e1 Fil e2 Dat a

would produce the following by recycling the smaller files.

1 lar ge eas y 12
2 sma ll eas y 23
3 lar ge har d 34
4 sma ll har d 45
5 lar ge eas y 56
6 sma ll eas y 67
7 lar ge har d 78
8 sma ll har d 89

dm: number lines
dm can number its input lines with its special variables INL INE, which always contains the input line number,
and INP UT, which always contains the current input line.

dm INL INE INP UT < dat a

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-3

Section 4.2 Data Transformation

dm: conditional algebraic combinations of columns
dm can produce algebraic combinations of columns. The following command reads from dat a and produces the
ratio of columns 2 and 1 with column 3 added on.

dm x2/ x1+ x3 < dat a

Transformations can be based on conditions. For example, if x1, the value in column 1, in the above example is 0,
then dm will exit after producing an error message like:

dm: div isi on by zer o. inp ut lin e 12 exp r[1].

To avoid this problem, the following will do the division only if x1 is non-zero.

dm "if x1 the n x2/ x1+ x3 els e 0" < dat a

probdist: probability/statistic conversion
pro bdi st can convert probabilities to distribution statistics and vice versa as seen in tables at the end of most
statistics textbooks. Many distributions are supported, including: the normal z, binomial, chi-square, F, and t. The
following will print the two-tailed probability of an obtained t statistic of 2.5 with 20 degrees of freedom.

pro bdi st pro b t 20 2.5
0.0 212 34

Similarly, the following will print the two-tailed probability of an F ratio of 6.25 with 1 and 20 degrees of freedom.

pro bdi st pro b F 1 20 6.2 5
0.0 212 34

These results are the same because of the relationship between the t and F distributions.

The following prints the critical value (also called the quantile) in the chi-square distribution with 5 degrees
of freedom to obtain a significance level of .05.

pro bdi st cri t chi sq 5 .05
11. 070 498

Both probabilities and critical values in the normal z distribution use the lower one tail -∞ to +∞ distribution, so the
z value that produces the .05 level is obtained with the following.

pro bdi st cri t z .05
-1. 644 854

The critical value for the 99th percentile is found with the following.

pro bdi st cri t z .99
2.3 263 48

Binomial distribution critical values are treated differently than the other continuous distributions. For the binomial
distribution based on five trials, and a probability of success of one half, The critical value for a one-tailed test at the
.05 level is:

pro bdi st cri t bin omi al 5 1/2 .05
5

even though the probability of 5 successes is proportionally much less than .05:

pro bdi st pro b bin omi al 5 1/2 5
0.0 312 50

This is because the binomial distribution is discrete. Not only are critical values conservative, sometimes there may
be no possible value; there is no way to get a less probable event than five out of five successes:

 1986 Gary Perlman

4-4 Data Manipulation STAT Handbook

pro bdi st cri t bin omi al 5 1/2 .01
6

Here, pro bdi st is returning an impossible value (one with zero probability).

ranksort: convert data to ranks
ran kso rt can rank order data from numerical data columns. For the input:

1 95 4.3
2 113 5.2
3 89 4.5
4 100 5.0
5 89 4.5

ran kso rt would produce:

1 3 1
2 5 5
3 1.5 2.5
4 4 4
5 1.5 2.5

The ties in the second and third columns get the average rank of the values for which they are tied. Once data are
ranksorted, further ranksorting has no effect. With rank orders within columns, rank order statistics (e.g., Spearman
rank order correlation, average group rank) can be computed by parametric programs like pai r or reg res s.

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-5

Section 4.3 Data Formatting

maketrix: form a matrix format file
mak etr ix reads its data, one whitespace separated string at a time from its free format input, and produces a
multicolumn output.

ser ies 1 20 | mak etr ix 5

The above produces a five column output.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

perm: permute lines
per m, with no options, randomizes its input lines. It can randomize output from programs like ser ies.

ser ies 1 20 | per m

A subset of this permutation is a sample without replacement. The following is a sample of size 10 from the file
dat a.

per m < dat a | dm "if INL INE <= 10 the n INP UT els e EXI T"

per m can be supplied a seed for its random number generator, to replicate a random permutation.

ser ies 1 20 | per m -s 576 2 | mak etr ix 5

The above produces (with my system’s random number generator):

18 7 10 13 2
14 11 19 15 20
1 3 9 6 16
8 17 12 5 4

per m can also put its lines in alphabetical or numerical order. For example, the output from the previous
example could be put into ascending order (according to the first number on each line) with:

ser ies 1 20 | per m -s 576 2 | mak etr ix 5 | per m -n

This produces:

1 3 9 6 16
8 17 12 5 4
14 11 19 15 20
18 7 10 13 2

dsort: sort data lines by multiple keys
The last example of the per m filter showed how lines can be ordered according to the numerical value in the first
column. dso rt can sort lines based on numerical or alphabetical values in any column. For example, the
following command sorts the previous example matrix in ascending order of the values in the third column.

ser ies 1 20 | per m -s 576 2 | mak etr ix 5 | dso rt -n 3

This produces:

1 3 9 6 16
18 7 10 13 2
8 17 12 5 4

 1986 Gary Perlman

4-6 Data Manipulation STAT Handbook

14 11 19 15 20

If there were ties in a column, dso rt could sort by additional key columns.

transpose: transpose matrix format file
tra nsp ose flips rows and columns in its input. For the input:

1 2 3 4
5 6 7 8
9 10 11 12

tra nsp ose produces:

1 5 9
2 6 10
3 7 11
4 8 12

The input to tra nsp ose does not have to be regular, nor does it have to be numerical.

one two thr ee
fou r fiv e
six
sev en eig ht
nin e ten ele ven

For the above input, tra nsp ose produces the following.

one fou r six sev en nin e
two fiv e eig ht ten
thr ee ele ven

Note that with regular inputs, the transposition of a transposition yields the original. This is not necessarily so with
data as in the above input and output. The above output piped through another pass of tra nsp ose produces a
result different from the original input.

one two thr ee
fou r fiv e ele ven
six eig ht
sev en ten
nin e

reverse: reverse lines, columns, characters
rev ers e can reverse the lines, fields, or characters in its input. It can provide easier access to the last lines in a
file, or the last columns on lines. To get the last 10 lines in a file, we can reverse the file, get the first 10 lines, and
then reverse those 10 lines.

rev ers e < dat a | dm "if INL INE GT 10 the n EXI T els e INP UT" | rev ers e

To get the last two columns in a file is easier.

rev ers e -f < dat a | dm s2 s1

Here, dm is used for column extraction, and rather than call rev ers e a second time, what were the last two
columns before reversal are listed in the opposite order.

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-7

colex: reorder columns, reformat columns
col ex is a column extraction program that shares some of the functionality of dm and rev ers e.
col ex is faster and has a simpler syntax than dm and has data formatting capabilities. Suppose a matrix dataset
with 10 columns is created with the following.

ser ies 1 50 | mak etr ix 10

col ex can extract the last five columns followed by the first five with the command:

ser ies 1 50 | mak etr ix 10 | col ex 6-1 0 1 2 3 4 5

Either ranges of columns or single columns can be given. The above command produces:

6 7 8 9 10 1 2 3 4 5
16 17 18 19 20 11 12 13 14 15
26 27 28 29 30 21 22 23 24 25
36 37 38 39 40 31 32 33 34 35
46 47 48 49 50 41 42 43 44 45

Note in the previous example how the numbers line up on the left, rather than the customary format to line
up the unit digits. This is because col ex puts tabs between columns, and it is not a problem because STAT
programs read data in free-format. col ex can print its columns in several numerical formats as well as the
default string format. The numerical formatting can round values to some number of decimal places (like zero, for
whole numbers). The option: -F 4i would tell col ex to format all the columns as integers, each four spaces
wide, and the -t option would tell col ex to not place a tab between columns. The format of columns can be
assigned to individual columns by placing the format before each range of columns. For example, the following
variation on the previous command would print columns 6-10 in a money format with two digits after the decimal
place, and columns 1-5 as integers four wide.

ser ies 1 50 | mak etr ix 10 | col ex -t 6.2 n6- 10 4i1 -5

6.0 0 7.0 0 8.0 0 9.0 0 10. 00 1 2 3 4 5
16. 00 17. 00 18. 00 19. 00 20. 00 11 12 13 14 15
26. 00 27. 00 28. 00 29. 00 30. 00 21 22 23 24 25
36. 00 37. 00 38. 00 39. 00 40. 00 31 32 33 34 35
46. 00 47. 00 48. 00 49. 00 50. 00 41 42 43 44 45

dm: reorder columns
dm, like col ex, can reorder columns. However, it does not allow the specification of ranges of columns. The
above example of col ex could be done with dm with similar results.

ser ies 1 50 | mak etr ix 10 | dm s6 s7 s8 s9 s10 s1 s2 s3 s4 s5

abut: paste corresponding lines from files
abu t can join data in separate files beside one another. In the usual case, abu t takes N files with K lines and
produces 1 file with K lines. Suppose the files hei ght and wei ght contain the respective heights and
weights of the same people. Each line in each file contains one height or weight. These could be plotted with the
plotting option on the pai r program with the following command.

abu t hei ght wei ght | pai r -p

 1986 Gary Perlman

4-8 Data Manipulation STAT Handbook

Section 4.4 Data Extraction

dm: conditional data extraction
dm can extract subsets of its input, either by columns or by lines. To extract columns of data, each extracted
column is specified with the number of the column preceded by the letter s. The following extracts columns 8, 2,
and 11, in that order.

dm s8 s2 s11

dm can extract lines of data by using its built-in line skipping expression SKI P. The following will extract lines
50 to 100.

dm "if INL INE >= 50 & INL INE <= 100 the n INP UT els e SKI P"

It is more awkward than column extraction, but the latter is common.

colex: quick column extraction
col ex can extract individual columns, or ranges of columns. For column extraction, it is easier to use and faster
than dm. The following extracts, in order, columns 8, 2, and 11.

col ex 8 2 11

linex: line extraction
lin ex can extract individual lines (by number), or ranges of lines. The following extracts, in order, lines 8, 2, and
11.

lin ex 8 2 11

To extract lines 50 to 100, you could type:

lin ex 50- 100

or you could even extract them in reverse order:

lin ex 100 -50

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-9

Section 4.5 Data Validation

validata: data validation
val ida ta will report for its input the number of columns, data-types of columns, and for columns with
numerical values, the maxima and minima. val ida ta reports any inconsistencies in the number of columns
in its input. Floating point numbers can be entered in scientific notation. For the input:

1 2 3
4 5 6
7 2E2 end
5 1e- 3

val ida ta’s output is:

val ida ta: Var iab le num ber of col umn s at lin e 4
Col N NA aln um alp ha int flo at oth er typ e min max

1 4 0 4 0 4 4 0 int 1 7
2 4 0 3 0 2 4 0 flo at 0.0 01 200
3 3 0 3 1 2 2 0 aln um 3 6

dm: conditional data validation
dm can find exceptional cases in its input. A simple case is non-numerical input, which can be checked with dm’s
num ber function.

dm "if !nu mbe r(s 1) the n ’ba d inp ut on lin e’ els e SKI P" INL INE

dm can check for specific values, ranges of values, or specific relations of values. The following prints all lines in
dat a with the string bad in them.

dm "if ’ba d’ C INP UT the n INP UT els e SKI P"

The input line number could be prepended.

dm INL INE "if ’ba d’ C INP UT the n INP UT els e SKI P"

This is possible because dm will produce no output for skipped lines, regardless of expression order. The
following prints all lines where column 3 is greater than column 2.

dm "if x3 > x2 the n INP UT els e SKI P"

dm can print lengths of strings and check for numerical fields:

dm len (s1) num ber (s1)

will print the length of column 1 strings, and report if they are numerical (0 for non-numbers, 1 for integers, 2 for
real numbers, 3 for exponential scientific notation numbers).

 1986 Gary Perlman

4-10 Data Manipulation STAT Handbook

Section 4.6 DM: Tutorial and Manual

dm is a data manipulating program with many operators for manipulating columnated files of numbers and
strings. dm helps avoid writing little BASIC or C programs every time some transformation to a file of data is
wanted. To use dm, a list of expressions is entered, and for each line of data, dm prints the result of evaluating
each expression.

Introductory Examples. Usually, the input to dm is a file of lines, each with the same number of fields.
Put another way, dm’s input is a file with some set number of columns.

Column Extraction: dm can be used to extract columns. If dat a is the name of a file of five columns,
then the following will extract the 3rd string followed by the 1st, followed by the 4th, and print them to the standard
output.

dm s3 s1 s4 < dat a

Thus dm is useful for putting data in a correct format for input to many programs, notably the STAT data analysis
programs. Warning: If a column is missing (e.g., you access column 3 and there is no third column in the input),
then the value of the access will be taken from the previous input line. This feature must be considered if there are
blank lines in the input; it may be best to remove blank lines, with dm or some other filter program.

Simple Expressions: In the preceding example, columns were accessed by typing the letter s (for string)
followed by a column number. The numerical value of a column can be accessed by typing x followed by a
column number. This is useful to form simple expressions based on columns. Suppose dat a is a file of four
numerical columns, and that the task is to print the sum of the first two columns followed by the difference of the
second two. The easiest way to do this is with:

dm x1+ x2 x3- x4 < dat a

Almost all arithmetic operations are available and expressions can be of arbitrary complexity. Care must be taken
because many of the symbols used by dm (such as * for multiplication) have special meaning when used in
UNIX (though not MSDOS). Problems can be avoided by putting expressions in quotes. For example, the
following will print the sum of the squares of the first two columns followed by the square of the third, a simple
Pythagorean program.

dm "x1 *x1 +x2 *x2 " ’x3 *x3 ’ < dat a

Line Extraction Based on Conditions: dm allows printing values that depend on conditions. The dm call

dm "if x1 >= 100 the n INP UT els e NEX T" < dat a

will print only those lines that have first columns with values greater than or equal to 100. The variable INP UT
refers to the whole input line. The special variable NEX T instructs dm to stop processing on the current line and
go to the next.

Data Types
String Data. To access or print a column in a file, the string variable, s, is provided. si (the letter s followed
by a column number, such as 5) refers to the ith column of the input, treated as a string. The most simple example
is to use an si as the only part of an expression.

dm s2 s3 s1

will print the second, third and first columns of the input. One special string is called INP UT, and is the current
input line of data. String constants in expressions are delimited by single or double quotes. For example:

"I am a str ing "

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-11

Numerical Data. Constant numbers like 123 or 14. 6 can be used alone or with other expressions.
Two general numerical variables are available To refer to the input columns, there is xi and for the result of
evaluated expressions, there is yi. xi refers to the ith column of the input, treated as a number. xi is the
result of converting si to a number. If si contains non-numerical characters, xi may have strange values. A
common use of the xi is in algebraic expressions.

dm x1+ x2 x1/ x2

will print out two columns, first the sum of the first two input columns, then their ratio.

The value of a previously evaluated expression can be accessed to avoid evaluating the same sub-
expression more than once. yi refers to the numerical value of the ith expression. Instead of writing:

dm x1+ x2+ x3 (x1 +x2 +x3)/3

the following would be more efficient:

dm x1+ x2+ x3 y1/ 3

y1 is the value of the first expression, x1+ x2+ x3. String values of expressions are unfortunately inaccessible.

Indexing numerical variables is usually done by putting the index after x or y, but if value of the index
is to depend on the input, such as when there are a variable number of columns, and only the last column is of
interest, the index value will depend on the number of columns. If a computed index is desired for x or y the
index should be an expression in square brackets following x or y. For example, x[N] is the value of the last
column of the input. N is a special variable equal to the number of columns in INP UT. There is the option to
use x1 or x[1] but x1 will execute faster so computed indexes should not be used unless necessary.

Special Variables. dm offers some special variables and control primitives for commonly desired
operations. Many of the special variables have more than one name to allow more readable expressions. Many can
be abbreviated, and the short forms will be shown in square brackets.

N the number of columns in the current input line
SUM the sum of the numbers on the input line
INL INE the line number of the input (initially 1.0)
OUT LIN E the number of lines so far output (initially 0.0)
RAN D [R] a random number uniform in [0,1) (may be followed by a seed)
INP UT [I] the original input line, all spaces, etc. included
NIL the empty expression (often used with a test)
KIL L [K] stop processing the current line and produce no output
NEX T synonym for KIL L
SKI P synonym for KIL L
EXI T [E] exit immediately (useful after a search)

User Interface
Expressions. Expressions are written in common computer language syntax, and can have spaces or underscores
inserted for readability anywhere except (1) in the middle of constants, and (2) in the middle of multicharacter
operators such as <= (less than or equal to). Four modes are available for specifying expressions to dm. They
provide the choice of entering expressions from the terminal or a file, and the option to use dm interactively or in
batch mode.

Argument Mode: The most common but restrictive mode is to supply expressions as arguments on the
command line call to dm, as featured in previous examples. The main problem with this mode is that many special
characters in UNIX and MSDOS are used as operators, requiring that many expressions be quoted. The main
advantage is that this mode is most useful in constructing pipelines and shell scripts.

 1986 Gary Perlman

4-12 Data Manipulation STAT Handbook

Expression File Mode: Another non-interactive method is to supply dm with a file with expressions in it
(one to each line) by calling dm with:

dm Efi len ame

where fil ena me is a file of expressions. This mode makes it easier to use dm with pipelines and redirection.

Interactive Mode: dm can also be used interactively by calling dm with no arguments. In interactive
mode, dm will first ask for a file of expressions. If the expressions are not in a file, type RET URN when asked
for the expression file, and they can be entered interactively. A null filename tells dm to read expressions from the
terminal. In terminal mode, dm will prompt with the expression number, and print out how it interprets what is
typed in if it has correct syntax, otherwise it allows corrections. When the last expression has been entered, an
empty line informs dm there are no more. If the expressions are in a file, type in the name of the file, and dm will
read them from there.

Input. If dm is used in interactive mode, it will prompt for an input file. A file name can be supplied or a
RET URN without a file name tells dm to read data from the terminal. Out of interactive mode, dm will read
from the standard input.

dm reads data a line at a time and stores that line in a string variable called INP UT. dm then takes
each column in INP UT, separated by spaces or tabs, and stores each in the string variables, si. dm then tries
to convert these strings to numbers and stores the result in the number variables, xi. If a column is not a number
(e.g., it is a string) then its numerical value will be inaccessible, and trying to refer to such a column will cause an
error message. The number of columns in a line is stored in a special variable called N, so variable numbers of
columns can be dealt with gracefully. The general control structure of dm is summarized in the following display.

rea d in n exp res sio ns; e1, e2, ... , en.
rep eat whi le the re is som e inp ut lef t

INP UT = <ne xt lin e fro m inp ut fil e>
N = <nu mbe r of fie lds in INP UT>
SUM = 0
RAN D = <a new ran dom num ber in [0, 1)>
INL INE = INL INE + 1
for i = 1 unt il N do

si = <it h str ing in INP UT>
xi = <si con ver ted to a num ber >
SUM = SUM + xi

for i = 1 unt il n do
swi tch on <va lue of ei>

cas e EXI T: <st op the pro gra m>
cas e KIL L: <go to get new INP UT>
cas e NIL : <go to nex t exp res sio n>
def aul t :

OUT LIN E = OUT LIN E + 1
yi = <va lue of ei>
if (ei not X’d) pri nt yi

<pr int a new lin e cha rac ter >

Output. In interactive mode, dm will ask for an output file (or pipe, on UNIX only).

Out put fil e or pip e:

A filename, a ‘‘pipe command,’’ or just RET URN can be entered. A null filename tells dm to print to the
terminal. If output is being directed to a file, the output file should be different from the input file. dm will ask
permission to overwrite any file that contains anything, but that does not mean it makes sense to write the file it is
reading from.

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-13

On UNIX, the output from dm can be redirected to another program by having the first character of the
output specification be a pipe symbol, the vertical bar: |. For example, the following line tells dm to pipe its
output to tee which prints a copy of its output to the terminal, and a copy to the named file.

Out put fil e or pip e: | tee dm. sav e

Out of interactive mode, dm prints to the standard output.

dm prints the values of all its expressions in %.6 g format for numbers (maintaining at most six digits of
precision and printing in the fewest possible characters), and %s format for strings. A tab is printed after every
column to insure separation.

Operations
dm offers many numerical, logical, and string operators. The operators are evaluated in the usual order (e.g., times
before plus) and expressions tend be evaluated from left to right. Parentheses can be used to make the order of
operations clear. The way dm interprets expressions can be verified by entering them interactively on UNIX, in
which case dm prints a fully parenthesized form.

An assignment operator is not directly available. Instead, variables can be evaluated but not printed by
using the expression suppression flag, X. If the first character of an expression is X, it will be evaluated, but not
printed. The value of a suppressed expression can later be accessed with the expression value variable, yi.

String Operations. Strings can be lexically compared with several comparators: < or LT (less-than),
<= or LE (less-than or equal), = or EQ (equal), != or NE (not equal), >= or GE greater-than or equal),
and > or GT (greater than). They return 1.0 if their condition holds, and 0.0 otherwise. For example,

"ab cde " <= ’ee ek! ’

is equal to 1.0 . The length of strings can be found with the len operator.

len ’fi ve’

evaluates to four, the length of the string argument. The character # is a synonym for the len operator. The
numerical type of a string can be checked with the num ber function, which returns 0 for non-numerical strings,
1 for integer strings, and 2 for real numbers (scientific notation or strings with non-zero digits after the decimal
point).

Individual characters inside strings can be accessed by following a string with an index in square brackets.

"ab cde fg" [4]

is the ASCII character number (164.0) of the 4th character in abc def g. Indexing a string is mainly useful for
comparing characters because it is not the character that is printed, but the character number. A warning is
appropriate here:

s1[1] = ’*’

will result in an error because the left side of the = is a number, and the right hand side is a string. The correct
(although inelegant) form is:

s1[1] = ’*’ [1]

A substring test is available. The expression:

str ing 1 C str ing 2

will return 1.0 if str ing 1 is somewhere in str ing 2. This can be used as a test for character
membership if string1 has only one character. Also available is !C which returns 1.0 if str ing 1 is NOT
in str ing 2.

 1986 Gary Perlman

4-14 Data Manipulation STAT Handbook

Numerical Operators. The numerical comparators are:

< <= = != >= >
LT LE EQ NE GE GT

and have the analogous meanings as their string counterparts.

The binary operators, + (addition), - (subtraction or "change-sign"), * (multiplication), and /
(division) are available. Multiplication and division are evaluated before addition and subtraction, and are all
evaluated left to right. Exponentiation, ˆ, is the binary operator of highest precedence and is evaluated right to left.
Modulo division, %, has the same properties as division, and is useful for tests of even/odd and the like. NOTE:
Modulo division truncates its operands to integers before dividing.

Several unary functions are available: l (natural log [lo g]), L (base ten log [Lo g]), e
(exponential [ex p]), a (absolute value [ab s]), f (floor [fl oor]), c (ceiling [ce il]). Their
meaning can be verified in the UNIX Programmer’s Manual. Single letter names for these functions or the more
mnemonic strings bracketed after their names can be used. Also available are trigonometric functions that work on
degrees in radians: sin cos tan asi n aco s ata n.

Logical Operators. Logical operators are of lower precedence than any other operators. Both logical
AND, & and OR | can be used to form complicated tests. For example, to see if the first three columns are in
either increasing or decreasing order, one could test if x2 was between x1 and x3:

x1< x2 & x2< x3 | x1> x2 & x2> x3

would equal 1.0 if the condition was satisfied. Parentheses are unnecessary because < and > are of higher
precedence than & which is of higher precedence than |. The above expression could be written as:

x1 LT x2 AND x2 LT x3 OR x1 GT x2 AND x2 GT x3

by using synonyms for the special character operators. This is useful to avoid the special meaning of characters in
command lines. The unary logical operator, ! (NOT), evaluates to 1.0 if its operand is 0.0, otherwise it equals
0.0. Many binary operators can be immediately preceded by ! to negate their value. != is "not equal to,"
!| is "neither," !& is "not both," and !C is "not in."

Conditional Expressions. The expressions:

if exp res sio n1 the n exp res sio n2 els e exp res sio n3
exp res sio n1 ? exp res sio n2 : exp res sio n3

evaluate to exp res sio n2 if exp res sio n1 is non-zero, otherwise they evaluate to
exp res sio n3. The first form is more mnemonic than the second which is consistent with C syntax. Upper
case names can be used in their stead. Both forms have the same meaning. exp res sio n1 has to be
numerical, exp res sio n2 or exp res sio n3 can be numerical or string. For example, The following
expression will filter out lines with the word bad in them.

if ’ba d’ C INP UT the n KIL L els e INP UT

As another example, the following expression will print the ratio of columns two and three if (a) there are at least
three columns, and (b) column three is not zero.

if (N >= 3) & (x3 != 0) the n x2/ x3 els e ’ba d lin e’

These are the only expressions, besides si or a string constant that can evaluate to a string. If a conditional
expression does evaluate to a string, then it CANNOT be used in some other expression. The conditional expression
is of lowest precedence and groups left to right, however parentheses are recommended to make the semantics
obvious.

 1986 Gary Perlman

STAT Handbook Data Manipulation 4-15

Expression Syntax
Arithmetic expressions may be formed using variables (with xi and yi) and constants and can be of arbitrary
complexity. In the following table, unary and binary operators are listed along with their precedences and a brief
description. All unary operators are prefix except string indexing, [], which is postfix. All binary operators are
infix.

Operators of higher precedence are executed first. All binary operators are left associative except
exponentiation, which groups to the right. An operator, O, is left associative if xOx Ox is parsed as
(xO x)O x, while one that is right associative is parsed as xO(xOx).

Unary Operators:
op prec description
sin 10 sine of argument degrees in radians
cos 10 cosine of argument degrees in radians
tan 10 tangent of argument degrees in radians
asi n 10 arc (inverse) sine function
aco s 10 arc (inverse) cosine function
ata n 10 arc (inverse) tangent function
sqr t 10 square root function
log 10 base e logarithm [l]
Log 10 base 10 logarithm [L]
exp 10 exponential [e]
abs 10 absolute value [a]
cei l 10 ceiling (rounds up to next integer) [c]
flo or 10 floor (rounds down to last integer) [f]
len 10 number of characters in string [#]
num ber 10 report if string is a number (0 non, 1 int, 2 real)
[] 10 ASCII number of indexed string character
- 9 change sign
! 4 logical not (also NOT, not)

Binary Operators:
op prec description
ˆ 8 exponentiation
* 7 multiplication
/ 7 division
% 7 modulo division
+ 6 addition
- 6 subtraction
= 5 test for equality (also EQ; opposite !=, NE)
> 5 test for greater-than (also GT; opposite <=, LE)
< 5 test for less-than (also LT; opposite, >=, GE)
C 5 substring (opposite !C)
& 4 logical AND (also AND, and; opposite !&)
| 3 logical OR (also OR, or; opposite !|)

Some Examples
To print lines 10-20 from an input file dm. dat, you could run the following command (note that x is the same
as x0, which is the same as INL INE, the input line number).

dm "if x >= 20 and x <= 20 the n INP UT els e SKI P" < dm. dat

 1986 Gary Perlman

4-16 Data Manipulation STAT Handbook

To print all the lines longer than 100 characters, you could run the following:

dm "if len (IN PUT) > 100 the n INP UT els e SKI P" < dm. dat

To print the running sums of values in a column, you need to use the y variables. The following will print
the running sum of values in the first column.

dm y1+ x1

To print the running sum of the data in the 5th column is a bit unintuitive. y1 is the value from the previous line
of the first expression, and x5 is the value of the fifth column on the current line. To get the running sum of
column 5, you would type:

dm y1+ x5

If the running sum is to come out in the third column, then you would run:

dm <so met hin g> <so met hin g> y3+ x5

dm is good at making tables of computed values. In the following example, the ech o command prints
headings for the columns, and col ex reformats the output of dm. col ex sets the default format to 10.3n
(numbers 10 wide, with 3 decimal places), and prints column 1 in 2i format (2-wide integer) and column 6 in 6i
format (6-wide integer). The -t option to col ex stops the printing of tabs after columns.

ech o " x 1/x x** 2 sqr t(x) log (x) "
ser ies 1 10 | dm x1 1/x 1 "x1 *x1 " "sq rt(x1) " "lo g(x 1)" |

col ex -t -F 10. 3n 2i1 2 6i3 4-5

x 1/x x** 2 sqr t(x) log (x)
1 1.0 00 1 1.0 00 0.0 00
2 0.5 00 4 1.4 14 0.6 93
3 0.3 33 9 1.7 32 1.0 99
4 0.2 50 16 2.0 00 1.3 86
5 0.2 00 25 2.2 36 1.6 09
6 0.1 67 36 2.4 49 1.7 92
7 0.1 43 49 2.6 46 1.9 46
8 0.1 25 64 2.8 28 2.0 79
9 0.1 11 81 3.0 00 2.1 97

10 0.1 00 100 3.1 62 2.3 03

 1986 Gary Perlman

CHAPTER 5

Data Analysis

5.1 Table of Analysis Programs .. 5-1
5.2 stats: print summary statistics .. 5-2
5.3 desc: descriptions of a single distribution .. 5-3
5.4 ts: time series analysis and plots ... 5-4
5.5 oneway: one way analysis of variance .. 5-5
5.6 rankind: rank-order analysis of independent groups .. 5-6
5.7 pair: paired points analysis and plots .. 5-7
5.8 rankrel: rank-order analysis of related groups .. 5-8
5.9 regress: multiple correlation/regression .. 5-9

5.10 anova: multi-factor analysis of variance .. 5-10
5.11 contab: contingency tables and chi-square .. 5-12
5.12 dprime: d’/beta for signal detection data .. 5-13
5.13 CALC: Tutorial and Manual .. 5-14

Using CALC
Setting Constant Values
Testing Conditions
Undefined Variables
Control Characters

Each of the analysis programs are introduced, showing some, but not all of their options. Full documentation can be
found in the manual entries. Details about the procedures and assumptions are found in the references in the
ALGORITHM sections of the manual entries. Most analysis programs allow summary statistics, inferential
statistics. and simple graphics. In general, a program consists of all the analyses for a specific type of data. There
are programs for univariate (single) distributions, multilevel, and multifactor analysis. Some simple analyses are
possible by combining data manipulation and analysis programs. For example, Scheffe confidence intervals can be
computed for means using the pro bdi st and cal c programs. A tutorial and reference manual for cal c
is the final section of this chapter.

 1986 Gary Perlman

STAT Handbook Data Analysis 5-1

Section 5.1 Table of Analysis Programs

Descriptive Inferential Graphical
Univariate
sta ts simple stats

des c many stats t-test histogram

ts summary auto-correlation bar plot

Multilevel
one way group stats (un)weighted error

between anova barplots

ran kin d rank stats Mann-Whitney fivenum

Kruskal-Wallis plots

Bivariate
pai r column stats paired t-test scatter plot

differences simple regression

correlation

Multivariate
reg res s variable stats linear regression residual

correlation partial correlation output

ran kre l rank stats Wilcoxon

correlation Friedman

Multifactor
ano va cell stats mixed model ANOVA

con tab crosstabs chi-square

fisher exact test

 1986 Gary Perlman

5-2 Data Analysis STAT Handbook

Section 5.2 stats: print summary statistics

sta ts prints summary statistics for its input. Its input is a free format series of strings from which it
extracts only numbers for analysis. When a full analysis is not needed, the following names request specific
statistics.

n min max sum ss mea n var sd ske w kur t se NA

pro mpt : sta ts
sta ts: rea din g inp ut fro m ter min al
1 2 3 4 5 6 7 8 9 10
EOF
n = 10
NA = 0
min = 1
max = 10
sum = 55
ss = 385
mea n = 5.5
var = 9.1 666 7
sd = 3.0 276 5
se = 0.9 574 27
ske w = 0
kur t = 1.4 383 6

pro mpt : ser ies 1 100 | dm log x1 | sta ts min mea n max
0 3.6 373 9 4.6 051 7

 1986 Gary Perlman

STAT Handbook Data Analysis 5-3

Section 5.3 desc: descriptions of a single distribution

des c describes a single distribution. Summary statistics, modifiable format histograms and frequency
tables, and single distribution t-tests are supported. des c reads free format input, with numbers separated by
any amount of white space (blank spaces, tabs, newlines). When order statistics are being printed, or when a
histogram or frequency table is being printed, there is a limit to the number of input values that must be stored.
Although system dependent, usually several thousand values can be stored.

An example input to des c is shown below.

3 3 4 4 7 7 7 7 8 9 1 2 3 4 5 6 7
8 9 9 8 7 6 5 4 3 2 4 5 6 1 2 3 4 3 1 7 7

The call to des c includes many options: -o for Order statistics, -hc fp respectively for a Histogram, and a
table with Cumulative Frequencies and Proportions, -m 0.5 to set the Minimum allowed value to 0.5, -M 8
to set the Maximum allowed value to 8, -i 1 to set the Interval width in the histogram and table to 1, and
-t 5 to request a t-test with null mean equal to 5.

des c -o -hc fp -m 0.5 -M 8 -i 1 -t 5

The output follows.

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Und er Ran ge In Ran ge Ove r Ran ge Mis sin g Sum

0 35 3 0 164 .00 0
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Mea n Med ian Mid poi nt Geo met ric Har mon ic
4.6 86 4.0 00 4.5 00 4.0 55 3.2 96

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
SD Qua rt Dev Ran ge SE mea n

2.1 93 2.0 00 7.0 00 0.3 71
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Min imu m Qua rti le 1 Qua rti le 2 Qua rti le 3 Max imu m
1.0 00 3.0 00 4.0 00 7.0 00 8.0 00

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Ske w SD Ske w Kur tos is SD Kur t

-0. 064 0.4 14 1.6 79 0.8 28
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Nul l Mea n t pro b (t) F pro b (F)
5.0 00 -0. 848 0.4 02 0.7 19 0.4 02

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Mid pt Fre q Cum Pro p Cum
1.0 00 3 3 0.0 86 0.0 86 ***
2.0 00 3 6 0.0 86 0.1 71 ***
3.0 00 6 12 0.1 71 0.3 43 *** ***
4.0 00 6 18 0.1 71 0.5 14 *** ***
5.0 00 3 21 0.0 86 0.6 00 ***
6.0 00 3 24 0.0 86 0.6 86 ***
7.0 00 8 32 0.2 29 0.9 14 *** *** **
8.0 00 3 35 0.0 86 1.0 00 ***

 1986 Gary Perlman

5-4 Data Analysis STAT Handbook

Section 5.4 ts: time series analysis and plots

ts performs simple analyses and plots for time series data. Its input is a free format stream of at most
1000 numbers. It prints summary statistics for the time series, allows rescaling of the size of the time series so that
time series of different lengths can be compared, and optionally computes auto-correlations of the series for different
lags. Auto-correlation analysis detects recurring trends in data. For example, an auto-correlation of lag 1 of a time
series pairs each value with the next in the series. ts is best demonstrated on an oscillating sequence, the output
from which is shown below. The call to ts includes several options: -c 5 requests autocorrelations for lags of
1 to 5, the -ps options request a time-series plot and statistics, and the -w 40 option sets the width of the plot
to 40 characters.

ts -c 5 -ps -w 40

1 2 3 4 5 4 3 2 1 2 3 4 5 4 3 2 1

n = 17
sum = 49
ss = 169
min = 1
max = 5
ran ge = 4
mid pt = 3
mea n = 2.8 823 5
sd = 1.3 173 1
Lag r rˆ2 n’ F df p

0 0.0 00 0.0 00 17 0.0 00 15 1.0 00
1 0.6 67 0.4 44 16 11. 200 14 0.0 05
2 -0. 047 0.0 02 15 0.0 28 13 0.8 69
3 -0. 701 0.4 91 14 11. 590 12 0.0 05
4 -1. 000 1.0 00 13 0.0 00 11 0.0 00
5 -0. 698 0.4 87 12 9.5 07 10 0.0 12

--- --+ --- --- --- --- |-- --- --- --- -+- --- --- -
--- --- --- --- --- --- |

--- --- ---
-- --- --- ---
-- --- --- --- --- --- --- -
-- --- --- ---
-

--- --- --- |
--- --- --- --- --- --- |

--- --- ---
-- --- --- ---
-- --- --- --- --- --- --- -
-- --- --- ---
-

--- --- --- |
--- --- --- --- --- --- |
--- --+ --- --- --- --- |-- --- --- --- -+- --- --- -
1.0 00 5.0 00

 1986 Gary Perlman

STAT Handbook Data Analysis 5-5

Section 5.5 oneway: one way analysis of variance

one way performs a between-groups one-way analysis of variance. It is partly redundant with ano va,
but is provided to simplify analysis of this common experimental design. The input to one way consists of each
group’s data, in free input format, separated by a special value called the splitter. Group sizes can differ, and
one way uses a weighted or unweighted (Keppel, 1973) means solution. At most 20 groups can be compared.
When two groups are being compared, the -t option prints the significance test as a t-test. The program is based
on a method of analysis described by Guilford and Fruchter (1978).

An example interactive session with one way is shown below. The call to one way includes the
-s option with 999 as the value of the Splitting value between groups. The -u option request the unweighted
means solution rather than the default weighted means solution. The -w 40 option requests an error bar plot of
width 40. Meaningful names are given to the groups.

pro mpt : one way -s 999 -u -w 40 les s equ al mor e
one way : rea din g inp ut fro m ter min al:
1 2 3 4 5 4 3 2 1
999
3 4 5 4 3 4 5 4 3
999
7 6 5 7 6 5
EOF

Nam e N Mea n SD Min Max
les s 9 2.7 78 1.3 94 1.0 00 5.0 00
equ al 9 3.8 89 0.7 82 3.0 00 5.0 00
mor e 6 6.0 00 0.8 94 5.0 00 7.0 00
Tot al 24 4.0 00 1.6 42 1.0 00 7.0 00

les s |<- === === (== #==)== === ==- --- > |
equ al | <== =(= #)= === -> |
mor e | <== =(= =#=)== =>|

1.0 00 7.0 00

Unw eig hte d Mea ns Ana lys is:
Sou rce SS df MS F p
Bet wee n 41. 333 2 20. 667 17. 755 0.0 00 ***
Wit hin 24. 444 21 1.1 64

 1986 Gary Perlman

5-6 Data Analysis STAT Handbook

Section 5.6 rankind: rank-order analysis of independent groups

ran kin d prints rank-order summary statistics and compares independent group data using non-
parametric methods. It is the non-parametric counterpart to the normal theory one way program, and the input
format to ran kin d is the same as for one way. Each group’s data are in free input format, separated by a
special value, called the splitter. Like one way, there are plots of group data, but ran kin d’s show the
minimum, 25th, 50th, and 75th percentiles, and the maximum. Significance tests include the median test, Fisher’s
exact test, Mann-Whitney U test for ranks, and the Kruskal-Wallis analysis of variance of ranks.

The following example is for the same data as in the example with one way. The options to set the
splitter and plot width are the same for both programs. Meaningful names are given to the groups.

pro mpt : ran kin d -s 999 -w 40 les s equ al mor e
ran kin d: rea din g inp ut fro m ter min al:
1 2 3 4 5 4 3 2 1
999
3 4 5 4 3 4 5 4 3
999
7 6 5 7 6 5
EOF

N NA Min 25% Med ian 75% Max
les s 9 0 1.0 0 1.7 5 3.0 0 4.0 0 5.0 0
equ al 9 0 3.0 0 3.0 0 4.0 0 4.2 5 5.0 0
mor e 6 0 5.0 0 5.0 0 6.0 0 7.0 0 7.0 0
Tot al 24 0 1.0 0 3.0 0 4.0 0 5.0 0 7.0 0

les s |< --- --- --- #-- --- - > |
equ al | <-- --- #-- > |
mor e | <-- --- -#- --- ->|

1.0 00 7.0 00

Med ian -Te st:
les s equ al mor e

abo ve 1 2 6 9
bel ow 6 3 0 9

7 5 6 18
WAR NIN G: 6 of 6 cel ls had exp ect ed fre que nci es les s tha n 5
chi sq 9.7 714 29 df 2 p 0.0 075 54

Kru ska l-W all is:
H (no t cor rec ted for tie s) 13. 337 778
Tie cor rec tio n fac tor 0.9 656 52
H (co rre cte d for tie s) 13. 812 197
chi sq 13. 812 197 df 2 p 0.0 010 02

 1986 Gary Perlman

STAT Handbook Data Analysis 5-7

Section 5.7 pair: paired points analysis and plots

pai r analyzes paired data by printing summary statistics and significance tests for two input variables in
columns and their difference, correlation and simple linear regression, and plots. The test of the difference of the
two columns against zero is equivalent to a paired t-test. The input consists of a series of lines, each with two paired
points. When data are being stored for a plot, at most 1000 points can be processed.

An example input to pai r is generated using the ser ies and dm programs connected by pipes.
The input to pai r are the numbers 1 to 100 in column 1, and the square roots of those numbers in column 2. The
dm built-in variable INL INE is used in a condition to switch the sign of the second column for the second half
of the data. pai r reads X-Y points and predicts Y (in column 2) with X (in column 1). The significance test of
the difference of the columns against 0.0 is equivalent to a paired-groups t-test. The call to pai r includes several
options: -sp requests Statistics and a Plot, -w 40 sets the Width of the plot to 40 characters, and -h 15
sets the Height of the plot to 15 characters.

ser ies 1 100 | dm x1 "(I NLI NE> 50? -1: 1)* x1ˆ .5" | pai r -sp -w 40 -h 15

Col umn 1 Col umn 2 Dif fer enc e
Min imu ms 1.0 000 -10 .00 00 0.0 000
Max imu ms 100 .00 00 7.0 711 110 .00 00
Sum s 505 0.0 000 -19 3.3 913 524 3.3 913
Sum Squ are s 338 350 .00 00 504 9.9 989 395 407 .63 03
Mea ns 50. 500 0 -1. 933 9 52. 433 9
SDs 29. 011 5 6.8 726 34. 884 5
t(9 9) 17. 406 9 -2. 814 0 15. 030 7
p 0.0 000 0.0 059 0.0 000

Cor rel ati on r-s qua red t(9 8) p
-0. 822 6 0.6 767 -14 .32 19 0.0 000

Int erc ept Slo pe
7.9 070 -0. 194 9

|-- --- --- --- --- --- --- --- --- --- --- --- --- --| 7.0 710 7
| 323 232 |
| 123 232 |
| 232 2 |
| 223 |
|22 1 |
|1 |
| |
| |Co lum n 2
| |
| |
| |
| |
| 232 2 |
| 123 232 321 |
| 223 232 323 |
|-- --- --- --- --- --- --- --- --- --- --- --- --- --| -10
1.0 00 100 .00 0

Col umn 1 r=- 0.8 23

 1986 Gary Perlman

5-8 Data Analysis STAT Handbook

Section 5.8 rankrel: rank-order analysis of related groups

ran kre l prints rank-order summary statistics and compares data from related groups. It is the non-
parametric counterpart to parts of the normal theory pai r and reg res s programs. Each group’s data are in
a column, separated by whitespace. Instead of normal theory statistics like mean and standard deviation, the median
and other quartiles are reported. Significance tests include the binomial sign test, the Wilcoxon signed-ranks test for
matched pairs, and the Friedman two-way analysis of variance of ranks.

The following (transposed) data are contained in the file sie gel .79, and are based on the example
on page 79 of Siegel (1956). The astute analyst will notice that the last datum in column 2 in Siegel’s book is
misprinted as 82.

82 69 73 43 58 56 76 65
63 42 74 37 51 43 80 62

When the output contains a suggestion to consult a table of computed exact probability values, it is because the
continuous chi-square or normal approximation may not be adequate. Siegel (1956) notes that the normal
approximation for the probability of the computed Wilcoxon T statistic is excellent even for small samples such as
the one above. Once again, the astute analyst will see the flaw in Siegel’s analysis when he uses a normal
approximation; he fails to use a correction for continuity.

pro mpt : ran kre l con tro l pri son er < sie gel .79
N NA Min 25% Med ian 75% Max

con tro l 8 0 43. 00 57. 00 67. 00 74. 50 82. 00
pri son er 8 0 37. 00 42. 50 56. 50 68. 50 80. 00
Tot al 16 0 37. 00 47. 00 62. 50 73. 50 82. 00

Bin omi al Sig n Tes t:
Num ber of cas es con tro l is abo ve pri son er: 6
Num ber of cas es con tro l is bel ow pri son er: 2
One -ta il pro bab ili ty (ex act) 0.1 445 31

Wil cox on Mat che d-P air s Sig ned -Ra nks Tes t:
Com par iso n of con tro l and pri son er

T (sm all er ran ksu m of lik e sig ns) 4.0 000 00
N (nu mbe r of sig ned dif fer enc es) 8.0 000 00
z 1.8 903 78
One -ta il pro bab ili ty app rox ima tio n 0.0 293 54
NOT E: Yat es’ cor rec tio n for con tin uit y app lie d
Che ck a tab le for T wit h N = 8

Fri edm an Chi -Sq uar e Tes t for Ran ks:
Chi -sq uar e of ran ks 2.0 000 00
chi sq 2.0 000 00 df 1 p 0.1 572 99
Che ck a tab le for Fri edm an wit h N = 8

Spe arm an Ran k Cor rel ati on (rh o) [co rre cte d for tie s]:
Cri tic al r (.0 5) t app rox ima tio n 0.7 067 34
Cri tic al r (.0 1) t app rox ima tio n 0.8 343 42
Che ck a tab le for Spe arm an rho wit h N = 8
rho 0.7 857 14

 1986 Gary Perlman

STAT Handbook Data Analysis 5-9

Section 5.9 regress: multiple correlation/regression

reg res s performs a multiple linear correlation and regression analysis. Its input consists of a series of
lines, each with an equal number of columns, one column per variable. In the regression analysis, the first column is
predicted with all the others. There are options to print the matrix of sums of squares and the covariance matrix.
There is also an option to perform a partial correlation analysis to see the contribution of individual variables to the
whole regression equation. The program is based on a method of analysis described by Kerlinger & Pedhazur
(1973). Non-linear regression models are possible using transformations with STAT utilities like dm. The
program can handle up to 20 input columns, but the width of the output for more than 10 is awkward.

The following artificial example predicts a straight line with a log function, a quadratic, and an inverse
function. The input to reg res s is created with ser ies and dm. The call to reg res s includes the
-p option to request a partial correlation analysis and meaningful names for most of the variables in the analysis.
The output from reg res s includes summary statistics for each variable, a correlation matrix, the regression
equation and the significance test of the multiple correlation coefficient, and finally, a partial correlation analysis to
examine the contribution of individual predictors, after the others are included in the model.

ser ies 1 20 | dm x1 log x1 x1* x1 1/x 1 | reg res s -p lin ear log qua d inv ers e

Ana lys is for 20 cas es of 4 var iab les :
Var iab le lin ear log qua d inv ers e
Min 1.0 000 0.0 000 1.0 000 0.0 500
Max 20. 000 0 2.9 957 400 .00 00 1.0 000
Sum 210 .00 00 42. 335 6 287 0.0 000 3.5 977
Mea n 10. 500 0 2.1 168 143 .50 00 0.1 799
SD 5.9 161 0.8 127 127 .90 23 0.2 235

Cor rel ati on Mat rix :
lin ear 1.0 000
log 0.9 313 1.0 000
qua d 0.9 713 0.8 280 1.0 000
inv ers e -0. 707 6 -0. 906 1 -0. 563 9 1.0 000
Var iab le lin ear log qua d inv ers e

Reg res sio n Equ ati on for lin ear :
lin ear = 5.5 39 log + 0.0 224 5 qua d + 6.7 64 inv ers e + -5. 663 05

Sig nif ica nce tes t for pre dic tio n of lin ear
Mul t-R R-S qua red SEe st F(3 ,16) pro b (F)
0.9 996 0.9 993 0.1 707 760 3.7 543 0.0 000

Sig nif ica nce tes t(s) for pre dic tor (s) of lin ear
Pre dic tor bet a b Rsq se t(1 6) p
log 0.7 609 5.5 389 0.9 684 0.2 709 20. 447 8 0.0 000
qua d 0.4 854 0.0 225 0.8 795 0.0 009 25. 455 5 0.0 000
inv ers e 0.2 555 6.7 638 0.9 314 0.6 688 10. 113 9 0.0 000

 1986 Gary Perlman

5-10 Data Analysis STAT Handbook

Section 5.10 anova: multi-factor analysis of variance

ano va performs analysis of variance with one random factor and up to nine independent factors. Both
within-subjects and unequal-cells between-subjects factors are supported. Nested factors, other than those involving
the random factor, are not supported. The input format is simple: each datum is preceded by a description of the
conditions under which the datum was obtained. For example, if subject 3 took 325 msec to respond to a loud sound
on the first trial, the input line to ano va might be:

s3 lou d 1 325

From input lines of this format, ano va infers whether a factor is within- or between-subjects, prints cell means
for all main effects and interactions, and prints standard format F tables with probability levels. The computations
done in ano va are based on a method of analysis described by Keppel (1973), however, for unequal cell sizes on
between-groups factors, the weighted-means solution is used instead of Keppel’s preferred unweighted solution.
The weighted-means solution requires that sample sizes must be in constant proportions across rows and columns in
interactions of between-subjects factors or else the analysis may be invalid.

An example input to ano va is shown below. The call to ano va gives meaningful names to the
columns of its input. The output from ano va contains cell statistics for all systematic sources (main effects and
interactions), a summary of the design, and an F-table.

ano va sub jec t noi se tri al RT

s1 lou d 1 259
s1 lou d 2 228
s2 sof t 1 526
s2 sof t 2 480
s3 lou d 1 325
s3 lou d 2 315
s4 sof t 1 418
s4 sof t 2 397

SOU RCE : gra nd mea n
noi se tri al N MEA N SD SE

8 368 .50 00 104 .87 13 37. 077 6

SOU RCE : noi se
noi se tri al N MEA N SD SE
lou d 4 281 .75 00 46. 125 7 23. 062 9
sof t 4 455 .25 00 58. 874 9 29. 437 4

SOU RCE : tri al
noi se tri al N MEA N SD SE

1 4 382 .00 00 116 .06 03 58. 030 2
2 4 355 .00 00 108 .19 43 54. 097 1

SOU RCE : noi se tri al
noi se tri al N MEA N SD SE
lou d 1 2 292 .00 00 46. 669 0 33. 000 0
lou d 2 2 271 .50 00 61. 518 3 43. 500 0
sof t 1 2 472 .00 00 76. 367 5 54. 000 0
sof t 2 2 438 .50 00 58. 689 9 41. 500 0

 1986 Gary Perlman

STAT Handbook Data Analysis 5-11

FAC TOR : sub jec t noi se tri al RT
LEV ELS : 4 2 2 8
TYP E : RAN DOM BET WEE N WIT HIN DAT A

SOU RCE SS df MS F p
=== === === === === === === === === === === === === === === === === ==
mea n 108 633 8.0 000 1 108 633 8.0 000 145 .11 1 0.0 07 **
s/n 149 72. 500 0 2 748 6.2 500

noi se 602 04. 500 0 1 602 04. 500 0 8.0 42 0.1 05
s/n 149 72. 500 0 2 748 6.2 500

tri al 145 8.0 000 1 145 8.0 000 10. 942 0.0 81
ts/ n 266 .50 00 2 133 .25 00

nt 84. 500 0 1 84. 500 0 0.6 34 0.5 09
ts/ n 266 .50 00 2 133 .25 00

 1986 Gary Perlman

5-12 Data Analysis STAT Handbook

Section 5.11 contab: contingency tables and chi-square

con tab supports the analysis of multifactor designs with categorical data. Contingency tables (also
called crosstabs) and chi-square test of independence are printed for all two-way interactions of factors. The method
of analysis comes from several sources, especially Bradley (1968), Hays (1973), and Siegel (1956). The input
format is similar to that of ano va: each cell count is preceded by labels indicating the level at which that
frequency count was obtained. Below are fictitious data of color preferences of boys and girls:

boy s red 3
boy s blu e 17
boy s gre en 4
boy s yel low 2
boy s bro wn 10
gir ls red 12
gir ls blu e 10
gir ls gre en 5
gir ls yel low 8
gir ls bro wn 1

The output from the following command includes of a summary of the input design, tables, and statistical analyses.

con tab sex col or

FAC TOR : sex col or DAT A
LEV ELS : 2 5 72

col or cou nt
red 15
blu e 27
gre en 9
yel low 10
bro wn 11
Tot al 72

chi sq 15. 222 222 df 4 p 0.0 042 62

SOU RCE : sex col or
red blu e gre en yel low bro wn Tot als

boy s 3 17 4 2 10 36
gir ls 12 10 5 8 1 36
Tot als 15 27 9 10 11 72
Ana lys is for sex x col or:

WAR NIN G: 2 of 10 cel ls had exp ect ed fre que nci es < 5
chi sq 18. 289 562 df 4 p 0.0 010 83
Cra mer ’s V 0.5 040 06
Con tin gen cy Coe ffi cie nt 0.4 500 73

 1986 Gary Perlman

STAT Handbook Data Analysis 5-13

Section 5.12 dprime: d’/beta for signal detection data

dpr ime computes d’ (a measure of discrimination of stimuli) and beta (a measure of response bias)
using a method of analysis discussed in Coombs, Dawes, & Tversky (1970). The input to dpr ime can be a
series of lines, each with two paired indicators: the first tells if a signal was present and the second tells if the
observer detected a signal. From that, dpr ime computes the hit-rate (the proportion of times the observer
detected a signal that was present), and the false-alarm-rate (the proportion of times the observer reported a signal
that was not present). If the hit-rate and the false-alarm-rate are known, then they can be supplied directly to the
program:

pro mpt : dpr ime .7 .4
hr far dpr ime bet a

0.7 0 0.4 0 0.7 8 0.9 0

The input in raw form, with the true stimulus (Was a signal present or just noise?) in column 1 and the observer’s
response (Did the observer say there was a signal?) in column 2, is followed by the output.

sig nal yes
sig nal yes
sig nal yes
sig nal yes
sig nal yes
sig nal yes
sig nal yes
sig nal no
sig nal no
sig nal no
noi se yes
noi se yes
noi se no
noi se no
noi se no

dpr ime would produce for the above data:

sig nal noi se
yes 7 2
no 3 3

hr far dpr ime bet a
0.7 0 0.4 0 0.7 8 0.9 0

 1986 Gary Perlman

5-14 Data Analysis STAT Handbook

Section 5.13 CALC: Tutorial and Manual

cal c is a program for mathematical calculations for which you might use a hand-held calculator.
cal c supplies most of the operations common to programming languages and variables with constraint properties
much like those in spreadsheets.

The arithmetical operators cal c offers are

+ addition
- subtraction and change-sign
* multiplication
/ division
% modulo division
ˆ exponentiation

Arithmetical expressions can be arbitrarily complex and are generally evaluated left to right. That is,

a + b - c

is the same as

(a + b) - c

Exponentiation is evaluated before multiplication and division which are evaluated before addition and subtraction.
For example, the expression

a + b - c * d / e ˆ 2

is parsed as

(a + b) - ((c * d) / (e ˆ 2))

This default order of operations can be overridden by using parentheses.

cal c supplies some transcendental functions: sqr t, log, exp, and abs, and the following
trigonometric functions: sin, asi n, cos, aco s, tan, and ata n, for which degrees are measured in
radians.

Using CALC
To use cal c, begin by typing

cal c

at the command level, and cal c will prompt you with

CAL C:

You can supply inputs to cal c from files specified by command line arguments. For example, typing

cal c foo

will read from the file foo and then ask for input from you. Type in each of your expressions followed by
RET URN and cal c will respond with how it parsed your expression followed by the result. In all following
examples, what you would type in is preceded by the cal c prompt

CAL C:

and what cal c responds with is immediately after. A simple calculation is:

CAL C: sqr t (12 ̂2 + 5ˆ2)
sqr t(((12 ˆ 2) + (5 ˆ 2))) = 13

 1986 Gary Perlman

STAT Handbook Data Analysis 5-15

Expressions can be stored by assigning them to variables. For example you could type:

CAL C: pi = 22/ 7
(22 / 7) = 3.1 428 6
CAL C: pi
pi = 3.1 428 6

Variables can be used in expressions.

CAL C: are a = pi * rˆ2
(pi * (r ˆ 2)) = UND EFI NED
CAL C: are a
are a = UND EFI NED

are a is undefined because r has not been set. Once r is set, are a will have a value because are a is set
to an equation rather than a particular value. This can be observed by printing all the variables so far introduced
with ˆV, which may have to be typed twice as ˆV is used in some UNIX versions to quote characters.

CAL C: ˆV
pi = 3.1 428 6 = (22 / 7)
are a = UND EFI NED = (pi * (r ˆ 2))
r = UND EFI NED =

The variable table is formatted so that each variable’s name is on the left, followed by its current value, followed by
its current definition. If r is set to 5, the value of are a is now defined.

CAL C: r = 5
5 = 5
CAL C: ˆV
pi = 3.1 428 6 = (22 / 7)
are a = 78. 571 4 = (pi * (r ˆ 2))
r = 5 = 5

The effect of changing r on are a can be observed because of the way are a is defined.

CAL C: r = 2
2 = 2
CAL C: are a
are a = 12. 571 4

A special variable named $ is always equal to the most recent result printed.

Setting Constant Values
Of course, there are times when you want to set a variable to a value and not have it depend on the values of
variables at a later time. To do this, you precede an expression with the number operator #. For example,

CAL C: are a2 = # are a
12. 571 6 = 12. 571 6
CAL C: ˆV
pi = 3.1 428 6 = (22 / 7)
are a = 12. 571 6 = (pi * (r ˆ 2))
r = 2 = 2
are a2 = 12. 571 6 = 12. 571 6

are a2 does not depend on the variable to which it was set because the number operator # only lets numbers
through it rather than expressions. If are a2 was set without the # operator, it would be subject to any changes
in are a or to any changes in variables on which are a depends.

CAL C: are a2 = are a
are a = 12. 571 6
CAL C: ˆV

 1986 Gary Perlman

5-16 Data Analysis STAT Handbook

pi = 3.1 428 6 = (22 / 7)
are a = 12. 571 6 = (pi * (r ˆ 2))
r = 2 = 2
are a2 = 12. 571 6 = are a

Testing Conditions
Variables can be set based on a tested condition. For example, you may want a variable max to always be the
maximum of a and b.

CAL C: max = if a > b the n a els e b
(if (a > b) the n a els e b) = UND EFI NED

max is undefined because a and b have not been set.

CAL C: a = 21
21 = 21
CAL C: b = 3ˆ3
(3 ˆ 3) = 27
CAL C: max
max = 27
CAL C: a = 50
50 = 50
CAL C: max
max = 50

The if-then-else expression allows variables to be set based on conditions. This condition can be made up with
relational and logical operators. The relational operators available with cal c are:

== test equality
!= test inequality
>= greater than or equal
<= less than or equal
> greater than
< less than

while the logical operators are:

& and
| or
! not

A more complicated expression involving these is:

if a > b & b > c the n b

The els e part of the conditional is optional, and if not present and the condition is false, the conditional is
undefined.

Undefined Variables
Variables are undefined if they have not been set, if they depend on variables that are undefined, or if they are set to
an expression involving an illegal operation.

CAL C: 1/0
(1 / 0) = UND EFI NED

You can be confident that no operations will result in cal c blowing up. Thus you could write the equation for
the roots of a quadratic formula with the following definitions and always get reasonable answers.

x = 0
a = b = 1

 1986 Gary Perlman

STAT Handbook Data Analysis 5-17

c = -1
rad ica l = sqr t (bˆ 2 - 4*a *c)
equ ati on = a*x ̂2 + b*x + c
der iva tiv e = 2*a *x + b
roo t1 = (-b + rad ica l) / (2 * a)
roo t2 = (-b - rad ica l) / (2 * a)

Control Characters
Non-mathematical operations are accomplished with control characters. To type a control character, say CTRL-p,
while you hold down the key labeled CTRL you type a p. This will appear as ˆP. Some control characters have
special meanings, such as "stop the program" so you must be careful with them. On UNIX, you can avoid some
problems with control characters by typing a ˆV before them. This character removes any special meaning
associated with the character immediately following it. So to type ˆP you could be extra safe and type ˆVˆ P.
To type a ˆV, you may have to type it twice. Unfortunately, these conventions are not universal.

The following control operations are available with cal c.

ˆP toggle the printing of expressions (UNIX only)
ˆRf read the input from file f and return to current state
ˆV print the variable table
ˆWf write the variable table to file f

(ˆW is a synonym for ˆV)

If you forget any of these commands, you can type a ? to get cal c to remind you.

 1986 Gary Perlman

5-18 Data Analysis STAT Handbook

Table of cal c Operations

Operator Associativity
Precedence Description

$ const none numerical value of previous calculation
#a 1 none numerical value of a
a=b 2 right a is set to expression b

if a the n b 3 left if a != 0 then b else UND EFI NED
els e 4 left
a|b 5 left true if a or b is true
a&b 6 left true is a and b are true
!a 7 none true is a is false

a==b 8 none true if a equals b
a!=b 8 none true if a is not equal b
a<b 8 none true if a is less than b
a>b 8 none true if a greater than b

a>=b 8 none true if a > b  a == b
a<=b 8 none true if a < b  a == b
a+b 9 left a plus b
a-b 9 left a minus b
a*b 10 left a times b
a/b 10 left a divided by b
a%b 10 left a modulo b
aˆb 11 right a to the b
-a 12 none change sign

abs (a) 12 none absolute value
exp (a) 12 none e to the power a
log (a) 12 none natural logarithm of a
sqr t(a) 12 none square root of a
sin (a) 12 none sine of a in radians (cos & tan)
asi n(a) 12 none arc sine of a (aco s & ata n)

 1986 Gary Perlman

CHAPTER 6

Manual Entries

This chapter contains the alphabetically ordered manual entries for the programs. The format follows that used on
UNIX systems, and to be honest, it takes some getting used to. One possible source of confusion for users is the
format of examples in the entries. The examples are chosen to work on UNIX using my preferred command shell,
ksh, so some translation is needed for UNIX csh users, and for MSDOS users. See Chapter 3 on conventions
used in the entries. Besides the manual entries, there is online help with most programs with the -O option.
Information about limits, previously part of the entries, is now only available with the -L option.

Learning About the Programs. After learning how to use a few programs, it would be a good idea to skim the
manual entries to see all the programs and their options. Besides the data manipulation and analysis programs, there
are manual entries for special programs included in the STAT distribution. cat is provided for MSDOS
versions that do not have the corresponding UNIX program. The MSDOS typ e utility does not handle multiple
files nor wildcards; cat does both. ff is a versatile text formatting filter that allows control of text filling to
any width, right justification, line spacing, pagination, line numbering, tab expansion, and so on. fpa ck creates
a plain text archive of a series of files. fpa ck can save space by reducing space wasted by many small files,
and it can save time in file transfers by sending several files in one package.

Reading Manual Entries Online. The man sta t program lets you read the manual entries online, assuming
that they have been installed. To read the entry on a program, say des c, you just type:

man sta t des c

 1986 Gary Perlman

	The |STAT Handbook
	Dedication and Copyright

	Table of Contents
	CHAPTER 0 Preface
	Purpose and Intended Audience of the Handbook
	Comparison With Other Packages
	Distribution Conditions
	References

	CHAPTER 1 Introduction
	Section 1.1 Capabilities and Requirements
	Section 1.2 Design Philosophy
	Section 1.3 Table of |STAT Programs
	Section 1.4 Table of UNIX and MSDOS Utilities

	CHAPTER 2 Annotated Example
	Section 2.1 A Familiar Problem
	Section 2.2 Computing Final Scores
	Section 2.3 Summary of Final Scores
	Section 2.4 Predicting Final Exam Scores
	Section 2.5 Failures by Assistant and Gender
	Section 2.6 Effects of Assistant and Gender

	CHAPTER 3 Conventions
	Section 3.1 Command Line Interpreters
	Section 3.2 Command Formats
	Section 3.3 Program Options
	Section 3.4 File Inputs and Outputs
	Section 3.5 Input Formats
	Section 3.6 Limits and Error Messages
	Section 3.7 Manual Entries

	CHAPTER 4 Data Manipulation
	Section 4.1 Data Generation/Augmentation
	Section 4.2 Data Transformation
	Section 4.3 Data Formatting
	Section 4.4 Data Extraction
	Section 4.5 Data Validation
	Section 4.6 DM: Tutorial and Manual
	Data Types
	User Interface
	Operations
	Expression Syntax
	Some Examples

	CHAPTER 5 Data Analysis
	Section 5.1 Table of Analysis Programs
	Section 5.2 stats: print summary statistics
	Section 5.3 desc: descriptions of a single distribution
	Section 5.4 ts: time series analysis and plots
	Section 5.5 oneway: one way analysis of variance
	Section 5.6 rankind: rank-order analysis of independent groups
	Section 5.7 pair: paired points analysis and plots
	Section 5.8 rankrel: rank-order analysis of related groups
	Section 5.9 regress: multiple correlation/regression
	Section 5.10 anova: multi-factor analysis of variance
	Section 5.11 contab: contingency tables and chi-square
	Section 5.12 dprime: d'/beta for signal detection data
	Section 5.13 CALC: Tutorial and Manual
	Using CALC
	Setting Constant Values
	Testing Conditions
	Undefined Variables
	Control Characters
	Table of cal c Operations

	CHAPTER 6 Manual Entries

