Abstract: There seems to be a clear consensus that graphical interfaces provide an opportunity to integrate data from complex process in a way that can greatly enhance the problem solving ability of human operators in the future. However, this consensus is masked by a proliferation of terms to express this position in the basic and applied research literatures (e.g., "integrality," "configurality," "proximity-compatibility," "visual momentum," "direct manipulation," and "ecological interface"). While the subtle nuances that distinguish among these terms are of academic interest, designers have greater concern for the general principles that might be gleaned from across the subtle distinctions. Base on a thorough review of the basic and applied literature (Bennett & Flach, In press), we argue that there is one basic characteristic of graphical representations that is critical for supporting problem solving. A good graphical display is one whose geometric (space/time) constraints reflect the functional constraints in the process being represented. In this presentation, we will demonstrate what we mean by a "functional constraint" in a process and a "geometric constraint" in a display. We will demonstrate alternative mappings from "functional constraints" to "geometric constraints." We will also discuss the implications of these mappings for the type of processing (cognitive versus perceptual) required of the human operator.
Keywords: Complex systems; Design; Evaluation; Models and theories; Process/display mapping; Screen output; Software development
Originally published: Proceedings of the Human Factors Society 36th Annual Meeting, 1992, pp. 470-474
Republished: G. Perlman, G. K. Green, & M. S. Wogalter (Eds.) Human Factors Perspectives on Human-Computer Interaction: Selections from Proceedings of Human Factors and Ergonomics Society Annual Meetings, 1983-1994, Santa Monica, CA: HFES, 1995, pp. 301-305.